Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T07:54:46.585Z Has data issue: false hasContentIssue false

The Creep Deformation and Elevated Temperature Microstructural Stability of a Two-Phase TiAl/Ti3Al Lamellar Alloy.

Published online by Cambridge University Press:  22 February 2011

M. F. Bartholomeusz
Affiliation:
Corp. Res. and Develop., Reynolds Metals Company, Richmond, VA 23219
J. A. Wert
Affiliation:
Dept. of Mat. Sci. and Eng., University of Virginia, Charlottesville, VA 22903.
Get access

Abstract

Enhanced work hardening of the phases in the lamellar microstructure has been cited as an explanation for the lower minimum creep rates of a two-phase TiAl/Ti3Al lamellar alloy compared with the minimum creep rates of the individual TiAl and Ti3Al single-phase alloys tested between 980 K and 1130 K. This proposition is confirmed by TEM observations. Thermal and thermomechanical exposure result in the microstructural evolution, which increases the minimum creep rate (εmin) of the lamellar alloy. The effect of microstructural evolution on εmin will be discussed in the present paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bartholomeusz, M.F. and Wert, J.A., Metall. Trans A, 25, 2161 (1994).Google Scholar
2. Bartholomeusz, M.F. and Wert, J.A., Materials Characterization, 33, 377 (1994).Google Scholar
3. Bartholomeusz, M.F., Cantrell, M.A. and Wert, J.A., (Submitted to Mat. Sci. Eng., 1994).Google Scholar
4. Rao, P.P. and Tangri, K., Mat. Sci. Eng., 132A, 49 (1991).Google Scholar
5. McLean, D., Progress in Physics, 29, 1 (1966).Google Scholar
6. Ashby, M.F., in Strengthening Methods in Crystals, edited by Kelly, A. and Nicholson, R.B., (John Wiley & Sons Inc., New York), (1971), pg. 137.Google Scholar
7. Vasudevan, V.K., Stucke, M.A., Court, S.A. and Fraser, H.L., Philos. Mag. Lett., 59, 299 (1989).Google Scholar
8. Bartholomeusz, M.F. and Wert, J.A., Metall. Trans A, 25, 2371 (1994).Google Scholar
9. Lin, L.Y., Courtney, T.H. and Ralls, K.M., Acta Metall. Mater., 25, 99 (1977).Google Scholar
10. Bartholomeusz, M.F., Yang, Q. and Wert, J.A., Scripta Metall. Mater., 29, 389 (1993).Google Scholar
11. Wert, J.A. and Bartholomeusz, M.F., (Submitted to Metall. Trans A, 1994).Google Scholar
12. Frost, H.J. and Ashby, M.F., Deformation-Mechanism Maps, (Pergamon Press Ltd, Oxford), (1982), pg. 7.Google Scholar
13. Kroll, S., Meehrer, H., Stolwijk, N., Herzig, C., Rosenkranz, R. and Frommeyer, G., Z. Metalk., 8, 591 (1992).Google Scholar
14. Es, M.-Souni, Bartels, A. and Wagner, R., Mat. Sci. Eng., A171, 127 (1993).Google Scholar