Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T06:21:07.841Z Has data issue: false hasContentIssue false

Coverage Dependence of CO Surface Diffusion on Pt Nanoparticles - an EC-NMR Study

Published online by Cambridge University Press:  26 February 2011

Andrzej Wieckowski
Affiliation:
[email protected], University of Illinois at Urbana-Champaign, Chemistry, 600 S. Mathews Ave, Urbana, IL, 61801, United States, 217-333-7943
Takeshi Kobayashi
Affiliation:
[email protected], University of Illinois at Urbana-Champaign, Chemistry, 600 S. Mathews Ave., Urbana, IL, 61801, United States
Panakkattu K Babu
Affiliation:
[email protected], University of Illinois at Urbana-Champaign, Chemistry, 600 S. Mathews Ave., Urbana, IL, 61801, United States
Jong Ho Chung
Affiliation:
[email protected], University of Illinois at Urbana-Champaign, Chemistry, 600 S. Mathews Ave., Urbana, IL, 61801, United States
Eric Oldfield
Affiliation:
[email protected], University of Illinois at Urbana-Champaign, Chemistry, 600 S. Mathews Ave., Urbana, IL, 61801, United States
Get access

Abstract

We have studied the effects of CO coverage on surface diffusion rates of CO adsorbed on nanoparticle Pt catalysts in sulfuric acid media by using 13C electrochemical nuclear magnetic resonance spectroscopy (EC-NMR) in the temperature range 253 - 293 K. For CO coverage from θ = 1.0 to 0.36, the diffusion coefficients follow Arrhenius behavior and both activation energy (E d) and pre-exponential factor (D co) show CO coverage dependence. Ed increases from 6.0 to 8.4 kcal/mol and DCO varies from 1.1 X 10-8 to 3.7 X 10-6 cm2/s when the coverage is increased from θ = 0.36 to θ = 1.0. On the Pt catalyst surface at partial CO coverage, our data strongly support the free site hopping model of adsorbed CO as the major surface diffusion mechanism, unlike the situation found with a fully CO covered surface where CO exchange between different surface sites is believed to be the major diffusion mechanism. Our results also indicate that the contributions of lateral repulsive interactions exert a stronger influence on the diffusive motion than does the nature of the surface structure. When the diffusion coefficient was estimated from CO stripping measurements by using an electrochemical modeling protocol, the estimated diffusion coefficients were a few orders of magnitude larger than those obtained from the EC-NMR experiments. Overall these results are important for improving our understanding of electrochemical surface dynamics of molecules at interfaces, and may help facilitate better control of fuel cell reactions where the presence of surface CO plays a crucial role in controlling the reaction rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tong, Y. Y., Oldfield, E., and Wieckowski, A., Faraday Discussions 121, 323 (2002).Google Scholar
2 Poelsema, B., Verheij, L. K., and Comsa, G., Phys. Rev. Lett. 49 (23), 1731 (1982).Google Scholar
3 Reuttrobey, J. E., Doren, D. J., Chabal, Y. J., and Christman, S. B., Phys. Rev. Lett. 61 (24), 2778 (1988); J. E. Reuttrobey, D. J. Doren, Y. J. Chabal, and S. B. Christman, J. Chem. Phys. 93 (12), 9113 (1990); A. Vonoertzen, H. H. Rotermund, and S. Nettesheim, Surf. Sci. 311 (3), 322 (1994).Google Scholar
4 Ma, J. W., Xiao, X. D., DiNardo, N. J., and Loy, M. M. T., Phys. Rev. B 58 (8), 4977 (1998).Google Scholar
5 Xiao, X.-D., Xie, Y., Jakobsen, C., and Shen, Y. R., Phys. Rev. B 56, 1252912538 (1997).Google Scholar
6 Becerra, L. R., Klug, C. A., Slichter, C. P., and Sinfelt, J. H., J. Phys. Chem. 97 (46), 12014 (1993).Google Scholar
7 Tong, Y. Y., Rice, C., Wieckowski, A., and Oldfield, E., J. Am. Chem. Soc. 122 (6), 1123 (2000); J. B. Day, P. A. Vuissoz, E. Oldfield, A. Wieckowski, and J. P. Ansermet, J. Am. Chem. Soc. 118 (51), 13046 (1996).Google Scholar
8 Tong, Y. Y., Kim, H. S., Babu, P. K., Waszczuk, P., Wieckowski, A., and Oldfield, E., J. Am. Chem. Soc. 124 (3), 468 (2002).Google Scholar
9 Babu, P. K., Kim, H. S., Chung, J. H., Oldfield, E., and Wieckowski, A., J. Phys. Chem. B 108 (52), 20228 (2004).Google Scholar
10 Kobayashi, T., Babu, P. K. Gancs, L., Chung, J. H., Oldfield, E., and Wieckowski, A., J. Am. Chem. Soc. 127, 14164 (2005).Google Scholar
11 Cherstiouk, O. V., Simonov, P. A., Zaikovskii, V. I., and Savinova, E. R., J. Electroanal. Chem. 554, 241 (2003).Google Scholar
12 Yeo, Y. Y., Wartnaby, C. E., and King, D. A., Science 268 (5218), 1731 (1995).Google Scholar
13 Chang, S. -C., Roth, J. D., Ho, Y., and Weaver, M. J., Journal of Electron Spectroscopy and Related Phenomena, 54–55, 1185 (1990); S. G. Podkolzin, J. Shen, J. J. de Pablo, and J. A. Dumesic, J. Phys. Chem. B 104, 4169 (2000).Google Scholar
14 Waszczuk, P., Solla-Gullon, J., Kim, H. S., Tong, Y. Y., Montiel, V., Aldaz, A., and Wieckowski, A., J. Catalysis 203, 1 (2001).Google Scholar
15 Lu, C., Rice, C., Masel, R. I., Babu, P. K., Waszczuk, P., Kim, H. S., Oldfield, E., and Wieckowski, A., J. Phys. Chem. B 106, 9581 (2002).Google Scholar
16 Tong, Y. Y., Oldfield, E., and Wieckowski, A., Analytical Chemistry 70 (15), A 518 (1998).Google Scholar
17 Day, J., Vuissoz, P. -A., Oldfield, E., Wieckowski, A., and Ansermet, J. -P., J. Am. Chem. Soc. 118, 13046 (1996).Google Scholar
18 Maillard, F., Eikerling, M., Cherstiouk, O. V., Schreier, S., Savinova, E., and Stimming, U., Faraday Discussions 125, 357 (2004).Google Scholar
19 Lin, T. S., Lu, H. J., and Gomer, R., Surf. Sci. 234 (3), 251 (1990).Google Scholar
20 Jennison, D. R., Schultz, P. A., and Sears, M. P., Phys. Rev. Lett. 77, 48284831 (1996).Google Scholar
21 Kizhakevariam, N., Jiang, X., and Weaver, M. J., J. Chem. Phys. 100, 6750 (1994).Google Scholar
22 Steininger, H., Lehwald, S., and Ibach, H., Surf. Sci. 123, 264 (1982); B. E. Hayden, K. Kretzschmar, A. M. Bradshaw, and R. G. Greenler, Surf. Sci. 149, 394 (1985).Google Scholar
23 Villegas, I. and Weaver, M. J., J. Chem. Phys. 101, 1648 (1994); N. M. Markovic, B. N. Grgur, C. A. Lucas, and P. N. Ross, J. Phys. Chem. B 103, 487 (1999).Google Scholar
24 Park, S., Wasileski, S. A., and Weaver, M. J., J. Phys. Chem. B 105, 9719 (2001).Google Scholar
25 Curulla, D., Clotet, A., Ricart, J. M., and Illas, F., J. Phys. Chem. B 103, 5246 (1999).Google Scholar
26 Lebedeva, N. P., Rodes, A., Feliu, J. M., Koper, M. T. M., and van Santen, R. A., J. Phys. Chem. B 106, 9863 (2002); P. Lazar, H. Schollmeyer, and H. Riegler, Phys. Rev. Lett. 94, 116101 (2005).Google Scholar
27 Gomer, R., Rep. Prog. Phys. 53, 917 (1990).Google Scholar
28 Hopstaken, M. J. P. and Niemantsverdriet, J. W., J. Chem. Phys. 113, 5457 (2000).Google Scholar
29 Vuissoz, P. A., Ansermet, J. P., and Wieckowski, A., Phys. Rev. Lett. 83 (12), 2457 (1999).Google Scholar