Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T02:31:51.810Z Has data issue: false hasContentIssue false

Covalent Chemical Modification of Single-walled Carbon Nanotubes Using Azide Functionalised Anthraquinone Derivatives for Pseudocapacitor Application.

Published online by Cambridge University Press:  09 August 2013

Charlotte Frayère
Affiliation:
Thales Research and Technology-France, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91 767 Palaiseau, France.
Christophe Galindo
Affiliation:
Thales Research and Technology-France, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91 767 Palaiseau, France.
Laurent Divay
Affiliation:
Thales Research and Technology-France, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91 767 Palaiseau, France.
Michel Paté
Affiliation:
Thales Research and Technology-France, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91 767 Palaiseau, France.
Pierre Le Barny
Affiliation:
Thales Research and Technology-France, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91 767 Palaiseau, France.
Get access

Abstract

Electrodes made of single-walled carbon nanotubes (SWCNTs) chemically modified by a series of anthraquinone derivatives (AQ) have been prepared and characterized by cyclic voltammetry in 0.1M H2SO4, using the standard 3 electrode set-up and by Raman spectroscopy. It has been demonstrated that a AQ modified SWCNT electrode provided between 114 to 220% higher specific capacitance, compared to pristine SWCNT electrode, depending on the length of the spacer between SWCNT and AQ.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Simon, P., and Gogotsi, Y., Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
Long, J. W., l Bélanger, D., Brousse, T., Sugimoto, W., Sassin, M. B., and Crosnier, O., MRS Bulletin 36, 513 (2011)CrossRefGoogle Scholar
Conway, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, (Kluwer Academic/Plenum Publishers, New York, 1999).CrossRefGoogle Scholar
Lee, H. Y., and Goodenough, J. B., J. Solid State Chem. 144, 220 (1999).CrossRefGoogle Scholar
Xu, C., Kang, F., Li, B., and Du, H., J. Mater. Res. 25(8), 1421 (2010)CrossRefGoogle Scholar
Laforgue, A., J. Power Sources 196, 559 (2011)CrossRefGoogle Scholar
Kalinathan, K., DesRoches, D. P., Liu, X., and Pickup, P. G., J. Power Sources 181, 182 (2008)CrossRefGoogle Scholar
Smith, R. D. L., and Pickup, P. G., Electrochim. Acta 54, 2305 (2009)CrossRefGoogle Scholar
Pognon, G., Brousse, T., Demarconnay, L. and Bélanger, D., J. Power Sources, 196, 4117 (2011)CrossRefGoogle Scholar
Pognon, G., Brousse, T., and Bélanger, D., Carbon 49, 1340 (2011)CrossRefGoogle Scholar
Eder, D., Chem. Rev. 110, 1348 (2010)CrossRefGoogle Scholar
Bondavalli, P., Pribat, D., Schnell, J.-P., Delfaure, C., Gorintin, L., Legagneux, P., Baraton, L., and Galindo, C., Eur. Phys. J. Appl. Phys. 60, 10401p1 (2012)CrossRefGoogle Scholar
Vix-Guterl, C., Saadallah, S., Jurewicz, K., Frackowiak, E., Reda, M., Parmentier, J., Patarin, J., and Béguin, F., Mater. Sci. Eng. B 108, 148 (2004)CrossRefGoogle Scholar
Kim, Y. J., Horie, Y., Ozaki, S., Matsuzawa, Y., Suezaki, H., and Kim, C., Carbon 42, 1491 (2004)CrossRefGoogle Scholar
Tasis, D., Tagmatarchis, N., Bianco, A., and Prato, M., Chem. Rev.106, 1105 (2005)CrossRefGoogle Scholar
Mackiewicz, N., Delaire, J. A., Rutherford, A. W., Doris, E., and Mioskowski, C., Chem. Eur. J. 15, 3882 (2009)CrossRefGoogle Scholar
Minato, M., and Lahti, P. M., J. Am. Chem. Soc. 119(9), 2187 (1997)CrossRefGoogle Scholar
Ono, N., Yamada, T., Saito, T., Tanaka, K., and Kaji, A., Bull. Chem. Soc. Jpn. 51(8), 2401 (1978)CrossRefGoogle Scholar
Luo, J., Haller, M., Ma, H., Liu, S., Kim, T.-D., Tian, Y., Chen, B., Jang, S.-H., Dalton, L. R., and Chen, A. K.-Y., J. Phys. Chem. B 108, 8523 (2004)CrossRefGoogle Scholar