Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:48:20.977Z Has data issue: false hasContentIssue false

Could Porosity Induce Gaps in the Vibrational Density of States of Nanoporous Silicon?

Published online by Cambridge University Press:  31 January 2011

Juan Carlos Noyola
Affiliation:
[email protected], Facultad de Ciencias-UNAM, Departamento de Física, MEXICO, D.F., Mexico
Alexander Valladares
Affiliation:
[email protected], Facultad de Ciencias-UNAM, Departamento de Física, MEXICO, D.F., Mexico
R. M. Valladares
Affiliation:
[email protected], Facultad de Ciencias-UNAM, Departamento de Física, MEXICO, D.F., Mexico
Ariel A. Valladares
Affiliation:
[email protected], Instituto de Investigaciones en Materiales-UNAM, Condensed Matter, MEXICO, D.F., Mexico
Get access

Abstract

As in our previous work [1] nanoporous silicon periodic supercells with 1000 atoms but now with 80 % porosity were constructed using the Tersoff potential and our novel approach [2]. The approach consists first in constructing a crystalline diamond-like supercell with a density (volume) close to the real value, and then lowering the density by increasing the volume, subjecting the resulting periodic supercell to Tersoff-based molecular dynamics processes at a temperature of 300 K, followed by geometry relaxation [1]. As in the ab initio approach [2] the resulting samples are also essentially amorphous and display pores along some of the crystallographic directions. We report the radial (pair) distribution function (RDF), g(r), the bond angle distribution, the pore structure where prominent and a computational prediction for the vibrational density of states for this structure. We then compare it to the 50 % porous sample presented in Ref [1]. The soft acoustic phonons are displaced towards lower energy in the 80 % porosity sample whereas the optical modes are displaced towards higher energies. The pseudo gap, existing in the 50 % porous sample, is depleted even more in the 80 % sample indicating a tendency towards the creation of a phonon gap for higher porosity materials. Some conjectures that point to the possible engineering of porous materials to produce predetermined phonon properties are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Noyola, J. C. Alexander Valladares, Valladares, R. M. and Valladares, Ariel A. Structural and Vibrational Studies of Nanoporous Silicon. A Novel Approach Using the Tersoff Interatomic Potential. Mater. Res. Soc. Symp. Proc. 2009, 1148, PP14.09.1- PP14.09.6.Google Scholar
2 Valladares, Ariel A. Valladares, Alexander and Valladares, R. M. Mater. Res. Soc. Symp. Proc. 988E, 97102, (2007).Google Scholar
3 Laaziri, K. Kycia, S. Roorda, S. Chicoine, M. Robertson, J. L. Wang, J. and Moss, S.C., Phys. Rev. Lett., 82, 3460(1999).Google Scholar
4 Kamitakahara, W. A. Soukoulis, C. M. Shanks, H. R. Buchenau, U and Grest, G. S. Phys. Rev. B, 36, 6539(1987).Google Scholar
5 Fortner, J. and Lannin, J. S. Phys. Rev. B, 39, 5527(1989).Google Scholar
6 Postol, T. A. Falco, C. M. Kampwirth, R. T. Schuller, I. K. and Yelon, W. B. Phys. Rev. Lett., 45, 648(1980).Google Scholar
7 Nakhmanson, S. M. and Drabold, D. A. Phys. Rev. B, 58, 15325(1998).Google Scholar
8 Loustau, E. R. L. Valladares, R. M. and Valladares, A. A. J. Non-Cryst. Solids, 338, 416(2004).Google Scholar
9 Biswas, R. Kwon, I. Bouchard, A. M. Soukoulis, C. M. and Grest, G. S. Phys. Rev. B, 39, 5101 (1989).Google Scholar
10 Chehaidar, A. Rouhani, M. D. and Zwick, A., J. Non-Cryst. Solids, 192, 238(1995).Google Scholar
11 Chehaidar, A. and Chermiti, T. J. Non-Cryst. Solids, 353, 1766(2007).Google Scholar
12 Nakhmanson, S. M. and Drabold, D. A. Phys. Rev. B, 61, 5376(2000).Google Scholar
13 Nakhmanson, S. M. and Drabold, D. A. J. Non-Cryst. Solids, 266, 156(2000).Google Scholar
14 Opletal, G. Petersen, T. C. Snook, I. K. and McCulloch, D.G., J. Chem. Phys., 126, 214705(2007).Google Scholar
15 Tersoff, J. Phys. Rev. B, 38, 9902(1988).Google Scholar
16 Tersoff, J. Phys. Rev. B, 39, 5566(1989).Google Scholar
17 Moriguchi, K. S. Munetoh, A. Shintani and Mootoka, T. Phys. Rev. B, 64, 195409(2001).Google Scholar
18 Ishimaru, M. Munetoh, S. and Mootoka, T. Phys. Rev. B, 56, 15133(1997).Google Scholar
19 Ishimaru, M. J. Phys.: Condens. Matter., 13, 4181(2001).Google Scholar
20 Ishimaru, M. J. Appl. Phys., 91, 686(2002).Google Scholar
21 Valladares, A. Valladares, R. M. Alvarez-Ramírez, F and Valladares, A. A. J. Non-Cryst. Solids, 352, 1032(2006).Google Scholar
22 Verlet, L. Phys. Rev., 159, 98(1967).Google Scholar
23 Monkhorst, H. J. and Pack, J. D. Phys. Rev. B, 13, 5188(1976).Google Scholar
24 Lannin, J. S. Pilione, L. J. Kshirsagar, S. T. Messier, R. and Ross, R. C. Phys. Rev. B, 26, 3506 (1982).Google Scholar