Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:06:22.024Z Has data issue: false hasContentIssue false

Correlations Between Grain Boundary Structure and Energy

Published online by Cambridge University Press:  15 February 2011

K. L. Merkle
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
D. Wolf
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

High-resolution electron-microscopy (HREM) and computer simulations of <110> tilt grain boundaries (GBs) in Au are used to investigate correlations between atomic-scale GB structure and energy. The energies calculated for a variety of symmetric and asymmetric GBs suggest that asymmetric GB-plane orientations are often preferred over symmetric ones. The experimentally observed faceting behavior agrees with the computed energies. Computer simulations indicate general interrelations between GB energy and (i) volume expansion and (ii) the number of broken bonds per unit area of GB. These atomic-scale microstructural GB parameters, as evaluated from HREM observations, are compared to simulation results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Merkle, K. L., Reddy, J. F., Wiley, C. L. and Smith, D. J., in Ceramic Microstructures '86, edited by Pask, and Evans, (Plenum 1987) p. 241.Google Scholar
2. Merkle, K. L. and Smith, D. J., Ultramicroscopy 22, 57 (1987).Google Scholar
3. Wolf, D., Mat. Res. Soc. Symp. Proc. 40, (1985).Google Scholar
4. Wolf, D., in Ceramic Microstructures '86, Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Plenum 1987) p. 177.Google Scholar
5. Wolf, D. and Phillpot, S., Mater. Sci. Eng. A107, 3 (1989).Google Scholar
6. Wolf, D., Acta Metall. 37, 1983 (1989).CrossRefGoogle Scholar
7. Wolf, D., Acta Metall. Mater. 38, 781 (1990).CrossRefGoogle Scholar
8. Sutton, A. P., Mat. Res. Soc. Proc. 122, 81 (1988).CrossRefGoogle Scholar
9. Wolf, D., Acta Metall. Mater. 38, 791 (1990).Google Scholar
10. Wolf, D., Acta Metall. 37, 1983 (1989), J. Appl. Phys. 69, 185 (1991).CrossRefGoogle Scholar
11. Foiles, S. M., Baskes, M. I. and Daw, M. S., Phys. Rev. B 33, 7983 (1986).Google Scholar
12. Wolf, D., Lutsko, J. and Kluge, M., in Atomistic Simultation of Materials, edited by Vitek, V. and Srolovitz, D. J. (Plenum 1989) p. 245.Google Scholar
13. Schober, T. and Balluffi, R. W., Phil. Mag. 21, 109 (1970).CrossRefGoogle Scholar
14. Merkle, K. L. and Wolf, D., Phil. Mag., in press.Google Scholar
15. Seeger, A. and Schottky, G., Acta Met. 7, 495 (1959).Google Scholar
16. Wood, G. J., Stobbs, W. M. and Smith, D. J., Phil. Mag. A 50, 375 (1984).Google Scholar
17. Merkle, K. L., submitted to Ultramicroscopy.Google Scholar
18. Cosandey, F., Chan, S.-W. and Stadelmann, P., Colloque de Phys. 51, C1109 (1990).Google Scholar
19. Wolf, D., J. Appl. Phys. 68, 3221 (1990).Google Scholar