Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T19:07:50.373Z Has data issue: false hasContentIssue false

Correlation of Silver Size Nanoparticles Between TEM and QELS

Published online by Cambridge University Press:  01 February 2011

A. Ruíz-Baltazar
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U, Ciudad Universitaria, CP 58060, Morelia Michoacán, MEXICO, Email: [email protected]
A. Escobedo
Affiliation:
Instituto de Física, BUAP, Edif. 14, Ciudad Universitaria, C.P. 72570, Puebla, Puebla, MÉXICO
U. Pal
Affiliation:
Instituto de Física, BUAP, Edif. 14, Ciudad Universitaria, C.P. 72570, Puebla, Puebla, MÉXICO
R. Pérez
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48–3, Cuernavaca, Morelos, 62251, MEXICO
G. Rosas
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U, Ciudad Universitaria, CP 58060, Morelia Michoacán, MEXICO, Email: [email protected]
Get access

Abstract

In this work, silver nanoparticles were synthesized by two methods: polyol and chemical reduction using sodium borohydride (NaBH4). In both cases, silver nitrate was employed as starting metallic salt and Poly-vinyl pyrrolidone (PVP) as surfactant agent. The average nanoparticles size was correlated by transmission electron microscopy (TEM) and quasielastic light scattering (QELS). The experimental results indicate that the average particle sizes measured by QELS were slightly higher than those obtained directly by TEM. Therefore, this work confirms that the QELS technique can give rapid and approximate average-particle size values in comparison with those obtained through TEM direct observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rao, C.N.R., Kulkarni, G.U., Thomas, P.J., Edwars, P.P., Chem. Soc. Rev. 29 27. (2000).Google Scholar
2. José-Yacamán, M., Ascencio, J.A., Tehuacanero, S., and Marin, M., Top Catal 18 167. (2002).Google Scholar
3. Li, X., Quan, X., and Kutal, C., Scripta Mater. 50 499. (2004).Google Scholar
4. Henglein, A., J. Phys. Chem. 97 5457. (1993).Google Scholar
5. Krutyakov, Y.A., Kudrinskii, A.A., Olenin, A.Y., Lisichkin, G.V., Russ. Chem. Rev. 77 233. (2008).Google Scholar
6. Abbasi, A.R., Morsali, A., Ultrason. Sonochem. 17 572. (2010)Google Scholar
7. Perkas, N., Wang, Y., Koltypin, Y., Gedanken, A., and Chandrasekaran, S., Chem. Commun. 988. (2001).Google Scholar
8. Landau, M.V., Vradman, L., Herskowitz, M., Koltypin, Y., Gedanken, A., J. Catal. 201 22. (2001).Google Scholar
9. Pal, U., Sánchez, J.F., Gamboa, S.A., Sebastián, P.J. and Perez, R., Phys. Stat. Solid. C 8 2944. (2003).Google Scholar
10. Yu. Krutyakov, A., Krudinsky, A.A., Olenin, A. Yu. and Lisichkin, G.V.. Applied Surface Science 256 7037. (2010).Google Scholar
11. Kan, C. X., Zhu, J.J. and Zhu, X.G.. J. Phys. D: Appl. Phys. 41 155304. (2008)Google Scholar
12. Praus, P., Turicová, M., and Klementová, M.. J. Braz. Chem. Soc., Vol. 20, No. 7, 135 (2009).Google Scholar
13. Jignasa, N., Solanki, Murthy, Z.V.P., Colloids and Surfaces A: Physicochem. Eng. Aspects 359 31. (2010).Google Scholar
14. Langmuir, S. Kapoor., 14, 1021 (1998).Google Scholar
15. Pal, S., Tak, Y.K. and Song, J.M., Applied and Environmental Microbiology, 73 (6), 1712 (2007).Google Scholar
16. Kottman, P., Martin, O.J.F, Smith, D.R. and Schultz, S.. Phys. Rev. B 64 235402. (2001).Google Scholar