Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T13:49:27.009Z Has data issue: false hasContentIssue false

Correlation of Optical Luminescence with Radiation Hardness in Doped LiNbO3 Crystals

Published online by Cambridge University Press:  01 February 2011

William J. Thomes Jr
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Kelly Simmons-Potter
Affiliation:
University of Arizona, Tucson, AZ 85721
Barrett G. Potter Jr
Affiliation:
University of Arizona, Tucson, AZ 85721
Louis S. Weichman
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Transient ionizing radiation fields have been observed to cause substantial optical loss in undoped LiNbO3 crystals operating at 1.06 microns. This loss is slow to recover and makes the selection of this material for Q-switch applications in radiation environments unfeasible. We have studied the effects of Mg doping on the radiation response of LiNbO3 crystals and have investigated the optical luminescence of doped and undoped samples. Our results indicate a strong correlation between crystal defects, formed primarily during crystal growth, and the radiation-induced optical loss exhibited by these materials. These findings have enabled us to produce radiation-hard LiNbO3 crystals for use in high gamma-field environments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chadderton, L.T., Radiation Damage in Crystals, Vol. (John Wiley and Sons, Inc., New York, NY, 1965).Google Scholar
2. Griscom, D.L., SPIE 541 (1985) 38.Google Scholar
3. Nassau, K., The Physics and Chemistry of Color, Vol. (John Wiley and Sons, Inc., New York, NY, 1983).Google Scholar
4. Burlot, R., Moncorgé, R., Manaa, H., Boulon, G., Guyot, Y., Garcia Solé, J., Cochet-Muchy, D., Opt. Mater. 6 (1996) 313.Google Scholar
5. Chah, K., Fontana, M.D., Aillerie, M., Bourson, P., Malovichko, G., Appl. Phys. B 67 (1998) 65.Google Scholar
6. Krol, D.M., Blasse, G., Powell, R.C., J. Chem. Phys. 73 (1980) 163.Google Scholar
7. Lorenzo, A., Jaffrezic, H., Roux, B., Boulon, G., Garcia Solé, J., Appl. Phys. Lett. 67 (1995) 3735.Google Scholar
8. Malovichko, G., Grachev, V., Schirmer, O.F., Appl. Phys. B 68 (1999) 785.Google Scholar
9. Sweeney, K.L., Halliburton, L.E., Bryan, D.A., Rice, R.R., Gerson, R., Tomaschke, H.E., J. Appl. Phys. 57 (1985) 1036.Google Scholar
10. Wilkinson, A.P., Cheetham, A.K., Jarman, R.H., J. Appl. Phys. 74 (1993) 3080.Google Scholar
11. Xue, D., Zhang, S., J. Phys.: Condens. Matter 9 (1997) 7515.Google Scholar
12. Blümel, J., Born, E., Metzger, T., J. Phys. Chem. Solids 55 (1994) 589.Google Scholar
13. Donnerberg, H., Tomlinson, S.M., Catlow, C.R.A., Schirmer, O.F., Phys. Rev. B 44 (1991) 4877.Google Scholar
14. Iyi, N., Kitamura, K., Izumi, F., Yamomoto, J.K., Hayashi, T., Asano, H., Kimura, S., J. Solid State Chem. 101 (1992) 340.Google Scholar
15. Safaryan, F.P., Feigelson, R.S., Petrosyan, A.M., J. Appl. Phys. 85 (1999) 8079.Google Scholar
16. Shimamura, S., Watanabe, Y., Sota, T., Suzuki, K., Iyi, N., Yajima, Y., Kitamura, K., Yamazaki, Y., Sugimoto, A., Yamagishi, K., J. Phys.: Condens. Matter 8 (1996) 6825.Google Scholar
17. Yatsenko, A.V., Ivanova, E.N., Sergeev, N.A., Physica B 240 (1997) 254.Google Scholar
18. Yatsenko, A.V., Ivanova-Maksimova, H.M., Sergeev, N.A., Physica B 254 (1998) 256.Google Scholar
19. Zotov, N., Boysen, H., Frey, F., Metzger, T., Born, E., J. Phys. Chem. Solids 55 (1994) 145.Google Scholar
20. Grabmaier, B.C., Wersing, W., Koestler, W., J. Cryst. Growth 110 (1991) 339.Google Scholar
21. Iyi, N., Kitamura, K., Yajima, Y., Kimura, S., Furukawa, Y., Sato, M., J. Solid State Chem. 118 (1995) 148.Google Scholar
22. Brannon, P.J., IEEE T. Nucl. Sci. 41 (1994) 642.Google Scholar