Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T17:43:20.706Z Has data issue: false hasContentIssue false

Copper Migration During Tungsten via Formation

Published online by Cambridge University Press:  01 February 2011

Jeff Gambino
Affiliation:
[email protected], IBM, 1000 River Street, Z/975A, Essex Junction, Vermont, 05452, United States
Ed Cooney
Affiliation:
[email protected], IBM, Essex Junction, Vermont, United States
Will Murphy
Affiliation:
[email protected], IBM, Essex Junction, Vermont, United States
Cameron Luce
Affiliation:
[email protected], IBM, Essex Junction, Vermont, United States
Steve Mongeon
Affiliation:
[email protected], IBM, Essex Junction, Vermont, United States
Ning Lai
Affiliation:
[email protected], IBM, Essex Junction, Vermont, United States
Bob Zwonik
Affiliation:
[email protected], IBM, Essex Junction, Vermont, United States
Felix Anderson
Affiliation:
[email protected], IBM, Essex Junction, Vermont, United States
Laura Schutz
Affiliation:
[email protected], IBM, Essex Junction, Vermont, United States
Tom C Lee
Affiliation:
[email protected], IBM, Essex Junction, Vermont, United States
Tom McDevitt
Affiliation:
[email protected], IBM, Essex Junction, Vermont, United States
Get access

Abstract

A yield problem is observed with tungsten vias formed on copper interconnects. Copper migration can occur during chemical vapor deposition (CVD) of tungsten, if there are defects in the liner inside the via. Copper can react quickly with SiH4 during the early stages of tungsten deposition, when SiH4-reduction of WF6 is used. Under severe conditions, large amounts of copper diffuse out of the underlying metal layer, resulting in copper silicide formation in the via and leaving voids in the copper wire. Copper migration can be minimized by reducing the time that the wafers are exposed to SiH4.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Edelstein, D. Heidenreich, J. Goldblatt, R. Cote, W. Uzoh, C. Lustig, N. Roper, P. McDevitt, T. Motsiff, W. Simon, A. Dukovic, J. Wachnik, R. Rathore, H. Schulz, R. Su, L. Luce, S. Slattery, J. IEDM Proc., 1997, p. 773.Google Scholar
2 Tran, T.A. Yong, L. Williams, B. Chen, S. Chen, A. ECTC Proc., 2000, p. 1674.Google Scholar
3 Edelstein, D. Davis, C. Clevenger, L. M.Yoon, A.Cowley, Nogami, T. H.Rathore, Agarwala, B. Arai, S. A.Carbone, Chanda, K. Cohen, S. Cote, W. Cullinan, M. Dalton, T. Das, S. Davis, P. Demarest, J. Dunn, D. Dziobkowski, C. Filippi, R. Fitzsimmons, J. Flaitz, P. Gates, S. Gill, J. Grill, A. Hawken, D. Ida, K. Klaus, D. Klymko, N. M.Lane, Lane, S. Lee, J. Landers, W. Li, W.K. Lin, Y.H. Liniger, E. Liu, X.H. A.Madan, Malhotra, S. Martin, J. Molis, S. Muzzy, C. Nguyen, D. Ono, S. Parks, C. Questad, D. Restaino, D. Sakamoto, A. Shaw, T. Shimooka, Y. Simon, A. Simonyi, E. Tempest, S., Kleeck, T. Van, Vogt, S. Wang, Y.Y. Wille, W. Wright, J. Yang, C.C. Ivers, T. IITC Proc., 2004, p. 214.Google Scholar
4 Stamper, A.K. Chinthakindi, A.K. Coolbaugh, D.D. Downes, K. Eshun, E.E. Ertuk, M. He, Z.X. Groves, R.A. Lindgren, P. Ramachandran, V. AMC Proc. 2004, MRS, 2005, p. 37.Google Scholar
5 Glasow, A. von, Fischer, A.H. Penka, S. AMC Proc. 2001, MRS, 2002, p. 433.Google Scholar
6 Choi, Z. Park, B.L. Lee, J.M. Choi, G.H. Lee, H.D. Moon, J.T. IRPS Proc., 2009, p. 828.Google Scholar
7 Agarwala, B. Armacost, M. Biesemans, S. Burrell, L. Chen, B. Han, K. Harmon, D. Heidenreich, J. Holloway, K. Rovedo, N. Kapur, S. Kebede, T. Kiesling, D. Kim, P. Matusiewicz, G. Lukaitis, J. Nguyen, P. Prabhakara, N. Rauch, S. Friese, G. Grellner, F. Kaltalioglu, E. Hoinkis, M. Lin, C. Mahnkopf, R. Prigge, O. Schafbauer, T. Schiml, T. Schruefer, K. Srinivasan, S. Stetter, M. Unger, M. Zoeller, R. ESSDERC 99, 1999, p. 632.Google Scholar
8 Herner, S.B. Zhang, H.M. Sun, B. Tanaka, Y. Littau, K.A. Dixit, G. AMC Proc. 1999, MRS, 2000, p. 539.Google Scholar
9 Herner, S.B. Tanaka, Y. Zhang, H. Ghanayem, S.G. J. Electrochem. Soc., 147, 1982 (2000).Google Scholar
10 McInerney, E.J. Mountsier, T.W. Chin, B.L. Broadbent, E.K. J. Vac. Sci. Tech., B11, 734 (1993).Google Scholar
11 Edelstein, D. Uzoh, C. Cabral, C. Jr. , DeHaven, P. Buchwalter, P. Simon, A. Cooney, E. III , Malhotra, S. Klaus, D. Rathore, H. Agarwala, B. Nguyen, D. AMC Proc. 2001, MRS 2002, p. 541.Google Scholar