No CrossRef data available.
Article contents
Controlling neuronal growth and connectivity via directed self-assembly of proteins
Published online by Cambridge University Press: 12 March 2013
Abstract
Materials that offer the ability to influence tissue regeneration are of vital importance to the field of Tissue Engineering. Because valid 3-dimensional scaffolds for nerve tissue are still in development, advances with 2-dimensional surfaces in vitro are necessary to provide a complete understanding of controlling regeneration. Here we present a method for controlling nerve cell growth on Au electrodes using Atomic Force Microscopy -aided protein assembly. After coating a gold surface in a self-assembling monolayer of alkanethiols, the Atomic Force Microscope tip can be used to remove regions of the self-assembling monolayer in order to produce well-defined patterns. If this process is then followed by submersion of the sample into a solution containing neuro-compatible proteins, they will self assemble on these exposed regions of gold, creating well-specified regions for promoted neuron growth.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2013