Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T10:14:16.488Z Has data issue: false hasContentIssue false

Controlling Lateral Ordering of InGaAs Quantum Dots with Arsenic Background

Published online by Cambridge University Press:  01 February 2011

Euclydes Marega
Affiliation:
[email protected], University of Arkansas, Physics, 226 Physics Building, Fayetteville, AR, 72701, United States, 479-575-4217
Ziad Abu Waar
Affiliation:
[email protected], University of Arkansas, Physics, 226 Physics Building, Fayetteville, AR, 72701, United States
Mohammad Hussein
Affiliation:
[email protected], University of Arkansas, Physics, 226 Physics Building, Fayetteville, AR, 72701, United States
Gregory Salamo
Affiliation:
[email protected], University of Arkansas, Physics, 226 Physics Building, Fayetteville, AR, 72701, United States
Get access

Abstract

We present in this work a method to control lateral ordering of In0.4Ga0.6As quantum dots (QDs) using the surface anisotropic and the growth environment. We have shown experimentally that using As2 molecules instead of As4 as a background flux is promising to control the diffusion of adatoms in away to make it possible to control the ordering of In0.4Ga0.6As QDs together with the GaAs surface properties specially for GaAs (100) surfaces. For GaAs (n11)B surfaces the As4 provides a better two dimension ordering than the As2 environment. Our results are consistent with reported experimental and theoretical studies on surface structure and diffusion mechanism over GaAs surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Ohshima, T., Phys. Rev. A, 62, 062316 (2000)Google Scholar
(2) Li, S. S., Xia, J. B., Liu, J. L., Yang, F. H., Niu, Z. C., Feng, S. L. and Zheng, H. Z., J. Appl. Phys. 90, 6151 (2001)Google Scholar
(3) Li, S. S., Long, G. L., Bai, F. S., Feng, S. L., and Zheng, H. Z., Pro. Natl. Acad. Sci, USA, 98(21), 11847 (2001)Google Scholar
(4) Wang, Zh. M., Holmes, K., Mazur, Yu. I. and Salamo, G. J., Appl. Phys. Lett. 84, 1931 (2004)Google Scholar
(5) Wang, Zh. M., Seydmohamadi, Sh., Lee, J. H., and Salamo, G. J., Appl. Phys. Lett. 85, 5031 (2004)Google Scholar
(6) Kim, K. M., Park, Y. J., Park, Y. M., and Hyon, C. K., J. Appl. Phys. 92, 5453 (2002)Google Scholar
(7) Ying, B., Liu, F. and Lagally, M. G., Phys. Rev. Lett. 92, 025502 (2004)Google Scholar
(8) Lee, S. C., Dawson, L. R., Malloy, K. J. and Brueck, S. R., Appl. Phys. Lett. 79, 2630 (2001)Google Scholar
(9) Ohtake, A., Kocan, P., Nakamura, J., Natori, A., and Koguchi, N., Phys. Rev. Lett. 92, 236105 (2004).Google Scholar
(10) Ripalda, J. N. et al, Surf. Sci. 540, L593 (2003).Google Scholar
(11) Kley, A., Ruggerone, P., and Scheffler, M., Phys. Rev. lett. 79, 5278 (1997).Google Scholar
(12) Ogura, T. et al, J. Crystal. Growth 226, 179 (2001).Google Scholar
(13) Granados, D., and Garcia, J. M., Appl. Phys. Lett. 82,2401 (2003).Google Scholar