Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T02:23:13.722Z Has data issue: false hasContentIssue false

Controlled and Selective Aggregation of Submicrometer Cu-Crystallites on FIB Sensitized p-Si

Published online by Cambridge University Press:  17 March 2011

Adrian Spiegel
Affiliation:
Swiss Federal Institute of Technology Lausanne (EPFL), Dept. of Materials Science, LTP, CH-1015 Lausanne, SWITZERLAND
Patrik Schmuki
Affiliation:
Dept. of Material Science, LKO, University of Erlangen-Nuremberg, D-91058 Erlangen, GERMANY
Get access

Abstract

Electrochemical deposition of metals and alloys onto metallic substrates plays an important role in many modern technologies. Usually, a photolithographic patterning process is used to produce the desired feature on the substrate surface. An alternative method to patterned metal deposition on semiconductors is presented here: it is based on changing the electrochemical properties of the semiconductor by controlled surface defect creation. A focused ion beam (FIB) was used to introduce defects into p-Si, followed by a selective electrochemical reaction to produce metal structures in the sub-micrometer range.

In this work we study the selective deposition behavior of Cu on FIB sensitized surface locations and show that crystallite growth follows a three- dimensional growth law. Crystallites grow very rapidly in a first phase and reach a size of roughly 200nm after 5s. Factors determining nucleation, growth, and coalescence of metal clusters are identified and investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J., and Deligianni, H., IBM J. Res. Develop. 42, 567 (1998).Google Scholar
[2] Edelstein, D. C., in Proc. SPIE – Int. Soc. Opt. Eng.: Microelectronic Device Technology II, PV 3506, SPIE Proceedings Series, p. 8 (1998).Google Scholar
[3] Ullmann, R., Will, T., and Kolb, D. M., Chem. Phys. Lett. 209, 238 (1993).Google Scholar
[4] Santinacci, L., Djenizian, T., and Schmuki, P., J. Electrochem. Soc. 148, C640 (2001).Google Scholar
[5] Fuhrmann, H., Candel, A., Döbeli, M., and Mühle, R., J. Vac. Sci. Technol. B 17, 2443 (1999).Google Scholar
[6] Djenizian, T., Santinacci, L., and Schmuki, P., J. Electrochem. Soc. 148, C197 (2001).Google Scholar
[7] Spiegel, A., Erickson, L. E., and Schmuki, P., J. Electrochem. Soc. 147, 2993 (2000).Google Scholar
[8] Schmuki, P., Erickson, L. E., Lockwood, D. J., Fraser, J. W., Champion, G., andH. Labbe, J., Appl. Phys. Lett. 72, 1039 (1998).Google Scholar
[9] Schmuki, P. and Erickson, L. E., Phys. Rev. Lett. 85, 2985 (2000).Google Scholar
[10] Schmuki, P., Erickson, L. E., and Champion, G., J. Electrochem. Soc. 148, C177 (2001).Google Scholar
[11] Gerischer, H., Z. Phys. Chem. 27 (1961).Google Scholar
[12] Morrison, S. R., Electrochemistry at semiconductor and oxidized metal electrodes, (Plenum Press, New York 1980).Google Scholar
[13] Oskam, G., Long, J. G., Natarajan, A., and Searson, P. C., J. Phys. D: Appl. Phys. 31, 1927 (1998).Google Scholar
[14] Ziegler, J. C., Reitzle, A., Bunk, O., Zegenhagen, J., and Kolb, D. M., Electrochim. Acta 45, 4599 (2000).Google Scholar
[15] Schmuki, P., Erickson, L. E., and Lockwood, D. J., Phys. Rev. Lett. 80, 4060 (1998).Google Scholar
[16] Schmuki, P., Erickson, L. E., and Lockwood, D. J., J. Por. Mat. 7, 233 (2000).Google Scholar
[17] Hausmann, S., Bischoff, L., Voelskow, M., Teichert, J., Moller, W., and Fuhrmann, H., Nucl. Instr. Methods B 148, 610 (1999).Google Scholar
[18] Park, Y. K., Takai, M., Lehrer, C., Frey, L., and Ryssel, H., Nucl. Instr.MethodsB 158, 493 (1999).Google Scholar
[19] Vetterli, D., Döbeli, M., Mühle, R., Nebiker, P. W., and Musil, C. R., Microelectronic Engineering 27, 339 (1995).Google Scholar
[20] Schmidt, W. U., Alkire, R. C., and Gewirth, A. A., J. Electrochem. Soc. 143, 3122 (1996).Google Scholar
[21] Natter, H. and Hempelmann, R., J. Phys. Chem. 100, 19525 (1996).Google Scholar
[22] Suter, T., Peter, T., and Böhni, H., Mater. Sci. Forum 192–194, 25 (1985).Google Scholar
[23] Böhni, H., Suter, T., and Assi, F., Surface and Coatings Technology 130, 80 (2000).Google Scholar