Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T17:54:09.081Z Has data issue: false hasContentIssue false

Control of Ferroelectric Phases by 4f Magnetic Moments in Multiferroic RMnO3 Crystals

Published online by Cambridge University Press:  26 February 2011

Hideki Kuwahara
Affiliation:
[email protected], Sophia Univ., Dept. of Phys., 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan, +81-3-3238-3430, +81-3-3238-3430
K. Noda
Affiliation:
[email protected], Sophia Univ., Dept. of Phys., 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
M. Akaki
Affiliation:
[email protected], Sophia Univ., Dept. of Phys., 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
F. Nakamura
Affiliation:
[email protected], Sophia Univ., Dept. of Phys., 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
D. Akahoshi
Affiliation:
[email protected], Sophia Univ., Dept. of Phys., 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
Get access

Abstract

We have investigated the magnetoelectric (ME) properties of the orthorhombic RMnO3 (R=mixed rare earth ions) crystals with and without the 4f magnetic moments, while keeping an average ionic size of R. In the presence of the magnetic contribution from the R ions ((Eu,Ho)MnO3), we have observed the ferroelectric polarization along the c axis (Pc) in a zero field, which arises from the bc spiral structure stabilized by the anisotropic exchange interaction between the R and Mn sublattices like TbMnO3. The Pc phase can be transferred to Pa by application of fields of ∼1.5 T parallel to the b axis. The observed decrease of transition field compared with TbMnO3 suggests that the magnetic contribution and the local distortion of the R ions are key factors for governing the ME properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y., Nature 426, 55 (2003).Google Scholar
2. Kimura, T. et al., Phys. Rev. B 68, 060403(R) (2003).Google Scholar
3. Kenzelmann, M. et al., Phys. Rev. Lett. 95, 087206 (2005).Google Scholar
4. Arima, T et al., Phys. Rev. Lett. 96, 097202 (2006).Google Scholar
5. Katsura, H., Nagaosa, N., and Balatsky, A. V., Phys. Rev. Lett. 95, 057205 (2005).Google Scholar
6. Mostovoy, M., Phys. Rev. Lett. 96, 067601, (2006).Google Scholar
7. Noda, K. et al., J. Appl. Phys. 99, 08S905 (2006).Google Scholar
8. Noda, K., Akaki, M., Nakamura, F., Akahoshi, D., and Kuwahara, H., J. Magn. Magn. Mater. ( in press, cond-mat/0610421); J. Phys.: Cond. Matter (in press, cond-mat/0614022).Google Scholar
9. Kajimoto, R. et al., submitted to J. Phys. Chem. Solids.Google Scholar