Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T23:37:26.387Z Has data issue: false hasContentIssue false

Continuum Model of Epitaxial Roughening

Published online by Cambridge University Press:  15 February 2011

Jacques G. Amar
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322
Fereydoon Family
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322
Get access

Abstract

A continuum equation for epitaxial and thin-film growth in which diffusion along the surface is the dominant relaxation process and the full diffusion along the surface is taken into account, is studied. The interface width is found to grow linearly with time (height) in agreement with recent experiments. At late times dynamic scaling breaks down and the surface develops a characteristic morphology which is similar to that found in experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Family, F. and Vicsek, T., eds. Dynamics of Fractal Surfaces, World-Scientific, Singapore (1991).Google Scholar
2. Herring, C., in The Physics of Powder Metallurgy edited by Kingston, W. E., McGraw-Hill, NY (1951).Google Scholar
3. Mullins, W. W., J. Appl. Phys. 28, 333 (1957); J. Appl. Phys. 30, 77 (1959).Google Scholar
4. Villain, J., J. Phys. I (France) 1, 19 (1991).Google Scholar
5. Wolf, D.E. and Villain, J., Europhys. Lett. 13, 389 (1990).Google Scholar
6. Das Sarma, S. and Tamborenea, P., Phys. Rev. Lett. 66, 325 (1991).Google Scholar
7. Golubovic, L. and Bruinsma, R., Phys. Rev. Lett. 66, 321 (1991).Google Scholar
8. Lai, Z.W. and Das Sarma, S., Phys. Rev. Lett. 66, 2348 (1991).Google Scholar
9. Siegert, M. and Plischke, M., Phys. Rev. Lett. 68, 2035 (1992).Google Scholar
10. Wilby, M., Vvedensky, D.D., and Zangwill, A., Phys. Rev. B 46, 12896 (1992).Google Scholar
11. Yan, H., Phys. Rev. Lett. 68, 3048 (1992).Google Scholar
12. Kessler, D.A., Levine, H., and Sander, L.M., Phys. Rev. Lett. 69, 100 (1992).Google Scholar
13. See Shitara, T., Vvedensky, D.D., Wilby, M.R., Zhang, J., Neave, J.H., and Joyce, B.A., Phys. Rev. B 46, 6815 (1992) and references therein.CrossRefGoogle Scholar
14. Amar, J.G., Lam, P.-M., and Family, F., Phys. Rev. E 47, 3242 (1993).Google Scholar
15. Amar, J.G. and Family, F., Preprint (1993).Google Scholar
16. Eaglesham, D.J., Gossmann, H.-J., and Cerullo, M., Phys. Rev. Lett. 65, 1227 (1990).Google Scholar
17. Eaglesham, D.J. and Gilmer, G.H., in Surface disordering: Growth, roughening and phase transitions, ed. by Jullien, R., Kertesz, J., Meakin, P., and Wolf, D.E., Nova, NY 1993; D.J. Eaglesham, private Communication.Google Scholar
18. Chevrier, J., Le Thanh, V., Buys, R., and Derrien, J., Europhys. Lett. 16, 737 (1991).CrossRefGoogle Scholar
19. He, Y.-L., Yang, H.-N., Lu, T.-M., and Wang, G.-C., Phys. Rev. Lett. 69, 3770 (1992).Google Scholar
20. Williams, R.S., Bruinsma, R., and Rudnick, J., in Evolution of Surface and Thin Film Microstructure, 1992 MRS Proceedings Series, edited by Atwater, H. A., Grabow, M., Chason, E., and Lagally, Max (Mat. Res. Soc, Pittsburgh, PA, 1992);Google Scholar
Eklund, E. A., Bruinsma, R., Rudnick, J. and Williams, R. S., Phys. Rev. Lett. 67, 1759 (1991).Google Scholar
21. Golubovic, L. and Karunasiri, R.P.U., Phys. Rev. Lett. 66, 3156 (1991).Google Scholar