Published online by Cambridge University Press: 11 February 2011
The research conducted in the framework of the French research project on spent nuclear fuel (SNF) long - term evolution (PRECCI Project) has enlightened the potential significance of spent nuclear fuel intrinsic evolution in closed system for the assessment of radionuclide (RN) source term in long-term storage or geological disposal. Beyond others, alpha self-irradiation enhanced diffusion and evolution of the grain boundaries cohesion are two major processes which have to be accounted for in view of the RN source term models development. Accounting for these processes, operational models are developed, the aim of which is to quantitatively define the RN release rates from SNF in long-term storage or geological disposal. They distinguish basically an instantaneous contribution (IRF in geological disposal) and a time-dependent contribution (matrix oxidation or alteration). RN inventories associated to these two different processes have to be modeled since they are time-dependent due to the RN diffusion within the pellet. The present paper details the models that are developed in France in terms of assumptions, conservatism and robustness. It comes out from this work that for the instant release fraction, we have to consider a much higher instant release fraction than classically assumed (5–6% in geological disposal) in particular for geological disposal.