Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T02:09:41.821Z Has data issue: false hasContentIssue false

Computer Simulation of Decaborane Implantation into Silicon, Annealing and Re-crystallization of Silicon

Published online by Cambridge University Press:  21 March 2011

Zinetulla Insepov
Affiliation:
Laboratory of Advanced Science &Technology for Industry, Himeji Institute of Technology, 3-1-2 Kouto, Kamigori, Ako, Hyogo 678-1205, Japan
Isao Yamada
Affiliation:
Laboratory of Advanced Science &Technology for Industry, Himeji Institute of Technology, 3-1-2 Kouto, Kamigori, Ako, Hyogo 678-1205, Japan
Get access

Abstract

Molecular Dynamics (MD) and Activation-Relaxation Technique (ART) models of decaborane ion implantation into Si and following rapid thermal annealing (RTA) processes have been developed. The B and Si atomic positions for implantation of accelerated decaborane ions, with total energy 3.5- 15 KeV, into Si substrate were obtained by MD simulation. The main difference between monomer and decaborane ion implantation with the same doses is the formation of a large amorphized area in a subsurface region for the decaborane case. The number of displaced Si atoms shows non-linear energy dependence at low impact energies. At higher energies ofthe investigated range of the decaborane energy range, however, a linear dependence is observed in accordancewith the prediction of the Kinchin-Pease formula. A new method that incorporates Activation-Relaxation Technique (ART) with MD has been developed and used to study re-crystallization of Si amorphized in the implantation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamada, I., Matsuo, J., Jones, E.S., Takeuchi, D., Aoki, T., Goto, T., Sugii, T., in “Materials Modification and Synthesis by Ion Beam Processing”, edited by Alexander, D.E., Cheung, N.W., Park, B., and Skopura, W. (Mat. Res. Soc. Symp. Proc. 438, Pittsburg PA 1997), pp. 363374.Google Scholar
2. Agarwal, A., Gossmann, H.J., Jacobson, D.C., Eaglesham, D.J., Sosnowski, M., Poate, J.M., Yamada, I., Matsuo, J., and Haynes, T.E., Appl. Phys. Lett. 75, 2015 (1998).Google Scholar
3. Chason, E., Picraux, S.T., Poate, J.M. et al., Appl. Phys. Rev. 81, 6513 (1997).Google Scholar
4. Nichols, C.S., Walle, C.G. Van de, and Pantelides, S.T., Phys. Rev. B40, 5484 (1989).Google Scholar
5. Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
6. Gilmer, G.H., Rubia, T.D. de la, Stock, D.M., Jaraiz, M., Nucl. Instr. Meth. in Phys. Res. B102, 247 (1995).Google Scholar
7. Jaraiz, M., Gilmer, G.H., Poate, J.M., Rubia, T. Diaz de la, Appl. Phys. Lett. 68, 409 (1996).Google Scholar
8. Tian, S., Moris, M., Morris, S.J., Obradovic, B., Tasch, A.F., in “Materials Modification and Synthesis by Ion Beam Processing”, edited by Alexander, D.E., Cheung, N.W., Park, B., and Skopura, W. (Mat. Res. Soc. Symp. Proc. 438, Pittsburg PA 1997), pp. 8388.Google Scholar
9. Tang, M., Colombo, L., Zhu, J., Rubia, T. Diaz de la, Phys.Rev. B55, 14279 (1997).Google Scholar
10. Bedrossian, P.J., Caturla, M.-J., and Rubia, T.Diaz de la in “Materials Modification and Synthesis by Ion BeamProcessing”, edited by Alexander, D.E., Cheung, N.W., Park, B., and Skopura, W. (Mat. Res. Soc. Symp. Proc. 438, Pittsburgh PA 1997), pp. 715720.Google Scholar
11. Smith, R., Shaw, M., Webb, R.P., Foad, M.A., J. Appl. Phys. 83, 3148 (1998)Google Scholar
12. Insepov, Z., Sosnowski, M., Yamada, I., Nucl. Instr. Methods Phys. Res. B127/128, 269 (1997).Google Scholar
13. Voter, A., J. Chem. Phys. 106, 4665 (1997)Google Scholar
14. Wooten, F., Winer, K., Weaire, D., Phys. Rev. Lett. 54, 1392 (1985)Google Scholar
15. Barkema, G.T., Mousseau, N., ibid, 77, 4358 (1996)Google Scholar
16. Mousseau, N., Barkema, G.T., Phys. Rev. E57, 2419 (1998)Google Scholar
17. Kaukonen, M., Perajoki, J., Nieminen, R.M., Jungnickel, G., and Frauenheim, Th., Phys. Rev. B61, 980 (2000)Google Scholar
18. Berendsen, H.J.C., Gunsteren, W.F. Van, In “Molecular liquids, dynamics and interaction”, edited by Barnes, A.J., Orville-Thomas, W.J., and Yarwood, J. (NATO ASI series C135, Reidel, NY 1984) pp. 475500 Google Scholar
19. Allen, M.P. and Tildesley, D.J., “Computer simulation of liquids”, Clarendon, Oxford, 1987.Google Scholar
20. Rahman, A., Phys.Rev. 136, A405 (1964); D. Levesque and L. Verlet, Phys.Rev. A2, 2514 (1970).Google Scholar
21. Norget, M.J., Robinson, M.T. and Torrens, I.M., Nucl. Eng. And Des. 33, 50 (1975).Google Scholar