Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T23:07:05.571Z Has data issue: false hasContentIssue false

Computational DFT Study of ZrSiO4 Polymorphs: Microelectronic, Nuclear Safety and Geological Implications

Published online by Cambridge University Press:  26 February 2011

Anatoli Korkin
Affiliation:
[email protected], Nano and Giga Solutions, Inc., 1683 E. Spur St, Gilbert, Arizona, 85296, United States, 480-539-4754, 480-5394754
Hideyuki Kamisaka
Affiliation:
[email protected], University of Tokyo, Chemical Systems Engineering, Japan
Koichi Yamashita
Affiliation:
[email protected], University of Tokyo, Chemical Systems Engineering, Japan
Andrey Safonov
Affiliation:
[email protected], Russian Academy of Sciences, Photochemistry Center, Russian Federation
Alexander Bagatur'yants
Affiliation:
[email protected], Russian Academy of Sciences, Photochemistry Center, Russian Federation
Get access

Abstract

Zirconium silicate is an extremely durable materials with the variety of useful optical and electronic properties and broad range of existing and potential applications. Using Density Functional Theory (DFT) in local density approximation (LDA) and generalized gradient approximation (GGA) with plane wave (PW) basis set we have revealed eight new polymorphs of ZrSiO4 within the energy range ∼1 eV above the most stable zircon which have higher and lower density than experimentally known zircon and reidite. Two structures, which have both silicon and zirconium atoms six-fold coordinated, orthorhombic AlTaO4-like (alumotantite) and monoclinic PbWO4-like (raspite), have similar energies at GGA level ∼0.35 eV above reidite and density intermediate between zircon and reidite. Among two low-density structures, which can be potentially revealed experimentally in the nanocrystalline thin films, the orthorhombic CaSO4-like form has energy similar to reidite but much lower density. We also conducted a comparative study of existing ZrO2 and SiO2 polymorphs, which demonstrates the higher accuracy of GGA approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Erwing, R. C., Luize, W., and Weber, W.J., J. Mater. Res. 10, 243 (1995); A. Meldrum, L.A. Boatner, W.J. Weber, and R.C. Erwing, Geochem. Cosmochem. Acta 62, 2509 (1998); R.C. Erwing, Proc. Natl. Acad. Sci. 96, 3432 (1999).CrossRefGoogle Scholar

2 Ando, E., Ebisawa, J., Hayashi, Y., Mitsui, A., Suzuki, S., J. Non-Crystalline Solids 178 (1994) 238.CrossRefGoogle Scholar

3 Wilk, G., Wallace, R.W., Anthony, J.M., J. Appl. Phys. 89 (2001) 5234.CrossRefGoogle Scholar

4 Rios, S., Malcherek, T., Salje, E.K.H., Domeneghetti, C., Acta Cryst. B 56, 947 (2000).CrossRefGoogle Scholar

5 Reid, A. F. and Ringwood, A.E., Earth. Planet. Sci. Lett. 6, 205 (1969); Liu, L.G., ibid 44, 390 (1979).CrossRefGoogle Scholar

6 Zalkin, A., Templeton, D.N., J. Chem. Phys., 40, 501 (1964); M.I. Kay, B.C. Frazer, I. Almodovar, Ibid. 40, 504 (1964).CrossRefGoogle Scholar

7 Kusaba, K., Yagi, T., Kikuchi, M., and Syono, Y., J. Phys. Chem. Solids 47, 675 (1986).CrossRefGoogle Scholar

8 Crocombette, J.-P. and Ghaleb, D., J. Nuc. Mat. 257, 282 (1998)CrossRefGoogle Scholar

9 Farnan, I., Balan, E., Pickard, C.J., and Mauri, F., Am. Mineralogist 88, 1663 (2003).CrossRefGoogle Scholar

10 Akhtar, M. J., and Waseem, S., Solid State Sci. 5, 541 (2003).CrossRefGoogle Scholar

11 Tange, Y. and Takahashi, E., Phys. Earth Planet. Inter. 143–144, 223 (2004).CrossRefGoogle Scholar

12 Stemmer, S., Schlom, D.G., In Nano and Giga Challenges in Microelectronics, edited by Greer, J., Korkin, A. and Labanowski, J. (Elsevier, Amsterdam, 2003), p. 129.CrossRefGoogle Scholar

13 Gucsik, A., Koeberl, C., Brandstätter, F., Reimold, W.U., and Libowitzky, E., Earth Planet. Sci. Lett. 202, 495 (2002).CrossRefGoogle Scholar

14 Balan, E., Mauri, F., Pickard, C.J., Farnan, I., and Calas, G., Am. Mineralogist, 88, 1769 (2003).CrossRefGoogle Scholar

15 Lucovsky, G., and Rayner, G.B. Jr., Appl. Phys. Lett. 77, 2912 (2000).CrossRefGoogle Scholar

16 Rignanese, G.-N., Detraux, F., Gonze, X., Bongiorno, A., Pasquarello, A., Phys. Rev. Lett. 89, 117601 (2002).CrossRefGoogle Scholar

17 http://database.iem.ac.ru/mincryst/ (Crystallographic and Crystallochemical Database for Mineral and their Structural Analogues).Google Scholar

18 http://webmineral.com/ (Minerology Database)Google Scholar

19 Ceperley, D. M. and Adler, B. J., Phys. Rev. Lett. 45, 566 (1980); S. J. Vosko, L. Wilk and M Nusair, Can. J. Phys. 58, 1200 (1980).CrossRefGoogle Scholar

20 Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M.R., Singh, D. J. and Fiolhais, C., Phys. Rev. B 46, 6671 (1992); Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar

21 Vanderbilt, D., Phys. Rev. B 85, 7892 (1990); Kresse, G. and Hafner, J., J. Phys.: Condens. Matter 6, 8245 (1994).CrossRefGoogle Scholar

22 Blöchl, P. E., Phys. Rev. B 50, 17953 (1994); Kresse, G. and Joubert, D., Phys. Rev B 59, 1758 (1999).CrossRefGoogle Scholar

23 Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar

24 Murnaghan, F. D., Proc. Natl. Acad. Sci. 30, 244 (1944); F. Birch, J. Geophys. Res. 83, 1257 (1978).CrossRefGoogle Scholar

25 Jepson, O. and Anderson, O. K., Solid State Commun. 9, 1763 (1971); Blöchl, P. E., Jepsen, O. and Andersen, O. K., Phys. Rev. B 49, 16223 (1994).CrossRefGoogle Scholar

26 Vienna ab initio simulation package (VASP); Version 4.4.5; http://cms.mpi.univie.ac.at/vasp/. See also Kresse, G. and Furthmüller, J., Comput. Mater. Sci., 6, 4136 (1996).CrossRefGoogle Scholar

27 Roth, R. S. and Waring, J.L., Am. Mineralogist 48, 1348 (1963).Google Scholar

28 Hawthorne, F. C. and Ferguson, R.B., Canad. Mineral. 13, 289 (1975).Google Scholar

29 Ni, Y., Hughes, J.M., and Mariano, A.N., Am. Mineralogist 80, 21 (1995).CrossRefGoogle Scholar

30 Weitzel, H. and Schrocke, H., Z. Kristallogr. 152, 69 (1980).CrossRefGoogle Scholar

31 Wang, X., Loa, I., Syassen, K., Hanfland, M., and Ferrand, B., Phys. Rev. B 70, 064109 (2004)CrossRefGoogle Scholar

32 Grzechnik, A., Crichton, W.A., Hanfland, M., and van Smaalen, S., J. Phys.: Condens. Matter 15, 7261 (2003)Google Scholar

33 Crichton, W. A. and Grzechnik, A., Krystallogr, Z.. NCS 219, 337 (2004).Google Scholar

34 Grezechnik, A., Syassen, K., Loa, I., Haufland, M., and Gesland, J.Y., Phys. Rev. B 65, 104102 (2002); J. Manion, S. Jandl, K. Syassen, and J.Y. Gesland, Phys. Rev. B 64, 235108 (2002).CrossRefGoogle Scholar

35 Hazen, R. M. and Finger, L.W., Amer. Mineral. 64, 196 (1979).Google Scholar

36 Scott, H. P., Williams, Q., and Knittle, E., 88, 15506 (2002).Google Scholar

37 Ercit, T. S., Hawthorne, F.C., and Cerny, P., Canad. Mineral., 30, 653 (1992).Google Scholar

38 Fujita, T., Kawada, J., and Kato, K., Acta Cryst. B 33, 162 (1977).CrossRefGoogle Scholar

39 Weitzel, H., Z. Kristallogr. 144, 238(1976).CrossRefGoogle Scholar

40 Wilder, M. and Giester, G., Mineralogy and Petrology, 39, 201 (1988).CrossRefGoogle Scholar

41 Petrovic, I., Heaney, P.J., and Navrotsky, A., Phys. Chem. Minerals 23, 119 (1996).CrossRefGoogle Scholar

42 Holm, J. L., Kleppa, O.J., and Westrum, E.E. Jr. Geochim. Cosmochim. Acta 31, 2289 (1967).CrossRefGoogle Scholar

43 Akaogi, M., and Navrotsky, A., Phys. Earth. Planet. Inter. 36, 124 (1984).CrossRefGoogle Scholar

44 Ackerman, R., Rauh, E. G., and Alexander, C. A., High Temp. Sci. 7, 304 (1975).Google Scholar

45 Hamann, D. R., Phys. Rev. Lett. 76, 660 (1996).CrossRefGoogle Scholar

46 Jaffe, J. E., Bachorz, R.A., and Gutowski, M., Phys. Rev. B 72, 144107 (2005).CrossRefGoogle Scholar

47 Keskar, N. R., and Chelikowsky, J. R., Phys. Rev. B. 46, 1 (1992).CrossRefGoogle Scholar

48 Králik, B., Chang, E. K. and Louie, S. G., Phys. Rev. B 57, 7027 (1998).CrossRefGoogle Scholar