Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T17:36:11.960Z Has data issue: false hasContentIssue false

COMPRESSION CREEP BEHAVIOR OF B2 AL-NI-RU TERNARY ALLOYS

Published online by Cambridge University Press:  26 February 2011

Fang Cao
Affiliation:
[email protected], University of Michigan, Materials Science and Engineering, 3062 H.H.Dow Bldg, 2300 Hayward St., Ann Arbor, MI, 48109, United States, 734-615-5164, 734-615-5168
Tresa M. Pollock
Affiliation:
[email protected], University of Michigan, Materials Science and Engineering, 2300 Hayward St., Ann Arbor, MI, 48109, United States
Get access

Abstract

The compression creep behavior of five Al- Ni-Ru ternary alloys with compositions across the NiAl-RuAl B2 phase field has been investigated within the temperature range of 950 °C to 1050 °C. A continuous increase of the melting temperature and creep resistance with increasing Ru/Ni ratio in these alloys was observed. Post-creep dislocation analyses identified the presence of <100> and <110> edge dislocations in the Al-deficient alloys. Conversely, jogged <100> screw dislocations predominated in the Ru-rich ternary alloys. Dislocation substructures and transient experiments suggest a transition of the creep mechanism from viscous glide controlled to jogged screw motion in these alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baker, I., Mater Sci Eng A Struct Mater Prop Microstruct Process, A19219, 1 (1995).Google Scholar
2. Tryon, B., Murphy, K.S., Levi, C.G., Yang, J., and Pollock, T.M., Surf. Coat. Technol., submitted for publication, (2006).Google Scholar
3. Tryon, B., Cao, F., Murphy, K.S., Levi, C.G., and Pollock, T.M., JOM, 58, 53 (2006).Google Scholar
4. Tryon, B., Feng, Q., Wellman, R.W., Murphy, K.S., Yang, J., Levi, C.G., Nicholls, J.R., and Pollock, T.M., Metall. Mater. Trans. A, (2006).Google Scholar
5. Tryon, B., Pollock, T.M., Gigliotti, M.F.X., and Hemker, K., Scripta Mater., 50, 845 (2004).10.1016/j.scriptamat.2003.12.009Google Scholar
6. Lu, D.C. and Pollock, T.M. in High-Temperature Ordered Intermetallic Alloys VIII. Symposium, edited by George, E.P., Yamaguchi, M., and Mills, M.J., (Mater. Res. Soc. Symp. Proc. 552, Boston, MA, 1999) pp.7–11Google Scholar
7. Pollock, T.M., Lu, D.C., Shi, X., and Eow, K., Mater. Sci. Eng., A, 317, 241 (2001).10.1016/S0921-5093(01)01163-7Google Scholar
8. Nandy, T.K., Feng, Q., and Pollock, T.M., Intermetallics, 11, 1029 (2003).Google Scholar
9. Tryon, B. and Pollock, T.M., Mater. Sci. Eng., A, 430, 266 (2006).10.1016/j.msea.2006.05.088Google Scholar
10. Cullity, B.D., Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., Reading, MA, 1978), p.555.Google Scholar
11. Kulkarni, K.N., Tryon, B., Pollock, T.M., and Dayananda, M.A., Scripta Materialia, submitted for publication, (2007).Google Scholar
12. Villars, P. and Calvert, L.D., Pearson's handbook of crystallographic data for intermetallic phases, 2nd ed. (ASM International, Materials Park, OH, 1991), p.2886.Google Scholar
13. Yang, W.J. and Dodd, R.A., Metal Sci. J., 7 L2, 41 (1973).Google Scholar
14. Whittenberger, J.D., J. Mater. Sci. , 22, 394 (1987).Google Scholar
15. Forbes, K.R., Glatzel, U., Darolia, R., and Nix, W.D., Metall. Mater. Trans. A, 27A, 1229 (1996).Google Scholar
16. Yaney, D.L. and Nix, W.D., J. Mater. Sci. , 23, 3088 (1988).Google Scholar
17. Vandervoort, R.R., Mukherjee, A.K., and Dorn, J.E., ASM Transactions, 59, 930 (1966).Google Scholar
18. Cao, F. and Pollock, T.M., Acta Mater., submitted for publication, (2007).Google Scholar