Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T11:24:12.424Z Has data issue: false hasContentIssue false

Comprehensive Study of Light-Soaking Effect in ZnO/Cu(InGa)Se2 Solar Cells with Zn-Based Buffer Layers

Published online by Cambridge University Press:  21 March 2011

Sutichai Chaisitsak
Affiliation:
Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan, [email protected]
Akira Yamada
Affiliation:
Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
Makoto Konagai
Affiliation:
Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
Get access

Abstract

The light-soaking effect in ZnO/ Cu(InGa)Se2 (CIGS) based solar cells has been studied. A CIGS thin film with Cu(InGa)(SeS)2 surface layer was obtained by selenization (H2Se)/sulfurization (H2S). A high resistively ZnO buffer layer deposited by the atomic layer deposition technique was used as a buffer layer. We found that the light-soaking effect mainly correlates with the properties of the CIGS surface, rather than with the properties of the ZnO buffer/window layer. This phenomenon can be eliminated by surface etching or doping CIGS surface with Zinc. Zinc diffusion using diethylzinc gas has been proposed in this work. To date, we have achieved efficiency of 13.9% (Voc: 560 mV, Jsc: 35.0 mA/cm2, FF: 0.71) without light soaking effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohtake, Y., Kushiya, K., Ichikawa, M., Yamada, A., Konagai, M. Jpn. J. Appl. Phys. 34, 5949 (1995).Google Scholar
2. Ohtake, Y., Yamada, A., Konagai, M., Okamoto, T., Saito, K., Sol. Energy Mater. Sol. Cells, 49, 269 (1997).Google Scholar
3. Chaisitsak, S., Sugiyama, T., Yamada, A. and Koganai, M., Jpn. J. Appl. Phys. Vol. 38, 4989 (1999).Google Scholar
4. Nakada, T., Furumi, K., Sonoda, K. and kunioka, A., Proc. 2nd World Conf. Photovolatic Energy Conversion, Vienna, (1998) p.1173.Google Scholar
5. Kushiya, K., Nii, T., Sugiyama, I., Sato, Y., Inamori, Y. and Takeshita, H., Jpn. J. Appl. Phys. 35. 4383 (1996)Google Scholar
6. Kushiya, K., private communication.Google Scholar
7. Kushiya, K., Kuriyaga, S., Kase, T., Tachiyuki, M., Sigiyama, I., Satoh, Y. and Takeshita, H., Proc. 25th IEEE Photovoltaic Specialists Conf. (1996) p. 989.Google Scholar
8. Delahoy, A.E., Ruppert, A. and Contreras, M., Thin Solid Films, 361–362, 140 (2000).Google Scholar
9. Meyer, Th., Schmidt, M., Harney, R., Engelhardt, F., Seifert, O., Parisi, J., Schmitt, M. and Rau, U., Proc. 26th IEEE Photovoltaic Specialists Conf. (1197) p. 371.Google Scholar
10. Rau, U., Jasenek, A., Herberholz, R., Schock, H. W., Guillemoles, J., Lincot, D. and Kronik, L., Proc. 2nd World Conf. Photovoltaic Energy Conversion, Vienna, (1998) p.428.Google Scholar
11. Eisgruber, I.L., Granata, J.E., Sites, J.R., Hou, J., Kessler, J., Sol. Energy Mater. Sol. Cells, 53, 367 (1998).Google Scholar
12. Zabierowski, P. and Igalson, M., Thin Solid Films, 361–362, 268 (2000).Google Scholar
13. Chaisitsak, S., Yamada, A. and Kongai, M., Jpn. J. Appl. Phys. 39, 1660 (2000).Google Scholar
14. Sugiyama, T., Chaisitsak, S., Yamada, A., Ma. Konagai, Kudriavtsev, Y., Godines, A., Villegas, A. and Asomoza, R., Jpn. J. Appl. Phys. 39, 4816 (2000).Google Scholar