Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T14:18:00.055Z Has data issue: false hasContentIssue false

Composition Control in the Deposition of Cu(InGa)(SeS)2 Thin Films

Published online by Cambridge University Press:  01 February 2011

William Shafarman
Affiliation:
[email protected], University of Delaware, Institute of Energy Conversin, 451 Wyoming Rd., Newark, DE, 19716, United States, 302 831-6215
Gregory Hanket
Affiliation:
[email protected], University of Delaware, Institute of Energy Conversion, Newark, DE, 19716, United States
Shiro Nishiwaki
Affiliation:
[email protected], University of Delaware, Institute of Energy Conversion, Newark, DE, 19716, United States
Get access

Abstract

The pentenary chalcopyrite compound Cu(InGa)(SeS)2 provides several potential advantages over Cu(InGa)Se2 as the absorber layer in thin film solar cells, especially with wide bandgap alloys. The effects of S addition to the quaternary alloy are investigated with films deposited by elemental thermal co-evaporation and by the reaction of metallic precursors in hydride gases. With co-evaporated films the addition of S complicates the control of composition through the film. The incorporation of the chalcogen species Se and S depend on the relative Cu in the film and, for films with excess Cu, on the relative group III composition. For the precursor reaction process the addition of S by the inclusion of H2S gas in the reaction enables control of the relative Ga concentration and bandgap of the film. With both processes the incorporation of S during deposition also effects the morphology and grain size. The co-evaporated films have smaller grains with S while the reacted films have larger grains which may be due to the higher TSS the S reaction enables.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shafarman, W. N. and Stolt, L., in Handbook of Photovoltaic Science and Engineering, ed. by Luque, A. and Hegedus, S., (John Wiley & Sons, Ltd., 2003) pp. 567616.Google Scholar
2. Hegedus, S., Prog. in Photov. 14, 393 (2006).Google Scholar
3. Jensen, C., Tarrant, D., Ermer, J., and Pollock, G., Proc. 23rd IEEE Photov. Spec. Conf., 577 (1993).Google Scholar
4. Marudachalam, M., Hichri, H., Klenk, R., Birkmire, R. W., Shafarman, W. N. and Schultz, J. M., Appl. Phys. Lett. 67, 3978 (1995).Google Scholar
5. Sato, H., Hama, T., Niemi, E., Ichikawa, Y., and Sakai, H., Proc. 23rd IEEE Photov. Spec. Conf., 521 (1993).Google Scholar
6. Gossla, M. and Shafarman, W. N., Thin Sol. Films 480-1, 33 (2005).Google Scholar
7. Verma, S., Orbey, N., Birkmire, R. W., and Russell, T. W. F., Prog. in Photov. 4, 341 (1996).Google Scholar
8. Hanket, G. M., Paulson, P. D., Singh, U., Junker, S. T., Birkmire, R. W., Doyle, F. J. III , Eser, E. and Shafarman, W. N., Proc. 28th IEEE Photov. Spec. Conf., 499 (2000).Google Scholar
9. Gabor, A. M., Tuttle, J. R., Albin, D. S., Contreras, M. A., Noufi, R., and Hermann, A. H., Appl. Phys. Lett. 65, 198 (1994).Google Scholar
10. Dullweber, T., Hanna, G., Rau, U., and Schock, H. W., Solar Eng. Mater. Solar Cells 67, 145–50 (2001).Google Scholar
11. Klenk, R., Walter, T., Schmid, D., and Schock, H. W., Jpn. J. Appl. Phys. Suppl. 32, 57 (1993).Google Scholar
12. Stavrides, A., Yapp, C., Shafarman, W. N., Aparicio, R., Opila, R., and Birkmire, R. W., Proc. 31st IEEE Photov. Spec. Conf., 247, (2005).Google Scholar
13. Walter, T., Ruckh, M., Velthaus, K. O., and Schock, H. W., Proc 11th E. C. Photov. Solar Energy Conf., 124 (1992).Google Scholar
14. Liang, B. W. and Tu, C. W., J. Appl. Phys. 74, 255 (1993).Google Scholar
15. Nishiwaki, S., and Shafarman, W. N., Proc. 4th World Conf. Photov. Eng. Conv., 461 (2006).Google Scholar
16. Nagoya, Y., Kushiya, K., Tachiyuki, M., and Yamase, O., Solar Energy Mat. and Solar Cells 67, 247 (2001).Google Scholar
17. Alberts, V., Titus, J., and Birkmire, R. W., Thin Sol. Films 451-2, 207 (2004).Google Scholar
18. Hanket, G., Shafarman, W., and Birkmire, R., Proc. 4th World Conf. Photov. Eng. Conv., 560 (2006).Google Scholar
19. Kapur, V., Basol, B., and Tseng, E., Solar Cells 21, 65 (1987).Google Scholar