Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T05:31:46.391Z Has data issue: false hasContentIssue false

Compensation Temperature of a Mixed Ising Ferrimagnetic Model in the Presence of External Magnetic Fields

Published online by Cambridge University Press:  10 February 2011

G. M. Buendia
Affiliation:
Departamento de Física.Universidad Simón Bolívar, Apartado 89000, Caracas 1080, Venezuela.
E. Machado
Affiliation:
Departamento de Física.Universidad Simón Bolívar, Apartado 89000, Caracas 1080, Venezuela.
M. A. Novotny
Affiliation:
Supercomputer Computations Research Institute, Florida State University, Tallahassee, FL 32306-4130, USA.
Get access

Abstract

The behavior of the compensation temperature of a mixed Ising ferrimagnetic system on a square lattice in which the two interpenetrating square sublattices have spins σ (±1/2) and spins S (±1,0) has been studied with Monte Carlo methods. Our model includes nearest and next-nearest neighbor interactions, a crystal field and an external magnetic field. This model is relevant for understanding bimetallic molecular ferrimagnetic materials. We found that there is a narrow range of parameters of the Hamiltonian for which the model has compensation temperatures and that the compensation point exists only for small values of the external field.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mallah, T., Tiebaut, S., Verdager, M. and Veillet, P., Science 262, 1554 (1993);Google Scholar
Okawa, H., Matsumoto, N., Tamaki, H. and Obba, M., Mol. Cryst. Liq. Cryst. 233, 257 (1993);Google Scholar
Turnbull, M., Landee, C. P., Soesbe, T. C. and Willet, R. D., Mol. Cryst. Liq. Crys. 233, 269 (1993).Google Scholar
2. Néel, L., Ann. Phys., Paris 3, 137 (1948).Google Scholar
3. Mansuripur, M., J. Appl. Phys. 61, 1580 (1987);Google Scholar
Tanaka, F., Tanaka, S., Imanura, N., Jpn. J. Appl. Phys. 26, 231 (1987).Google Scholar
4. Siqueira, A.F. and Fittipaldi, I.P., J. Magn. Magn. Mater. 54, 678 (1986);Google Scholar
Bobak, A. and Jascur, M., Phys. Rev. B 51, 11533 (1995).Google Scholar
5. Buendia, G.M. and Novotny, M.A., J. Phys.: Condens. Matter 9, 5951 (1997).Google Scholar
6. Buendia, G.M., Novotny, M.A. and Zhang, J., in Computer Simulations in Condensed Matter Physics VII, ed. Landau, D.P., Mon, K.K. and Schüttler, H.-B. (Springer, Berlin, 1994), p. 223;Google Scholar
Buendia, G.M. and Liendo, J.A., J. Phys.: Condens. Matter 9, 5439 (1997).Google Scholar
7. Binder, K. in Monte Carlo Methods in Statistical Physics, ed. Binder, K. (Springer, Berlin, 1979).Google Scholar