Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T22:52:58.238Z Has data issue: false hasContentIssue false

A Comparison of Tunneling Through Thin Oxide Layers on Step-free and Normal Si Surfaces

Published online by Cambridge University Press:  11 February 2011

Antonio C. Oliver
Affiliation:
Materials Science & Engineering, Cornell University, Ithaca, NY 14850, U.S.A.
Jack M. Blakely
Affiliation:
Materials Science & Engineering, Cornell University, Ithaca, NY 14850, U.S.A.
Get access

Abstract

Surface and interface morphology may play an important role in the electrical performance of metal-oxide-semiconductor (MOS) devices with small characteristic dimensions. In previous work we showed how steps on the silicon surface influence the Si-SiO2 interface morphology and the outer oxide surface morphology following thermal oxidation [1]. The Si-SiO2 interface morphology is largely determined by the starting silicon substrate step distribution and atomic steps at the Si surface cause an inherent variation in oxide thickness after thermal oxidation. In the present study we report how roughness caused by increased interfacial step density may affect the electronic tunneling characteristics of an MOS device structure. To determine the extent to which the step morphology plays a role in the tunneling behavior of such devices, similar arrays of capacitors were fabricated on both Si surfaces with reduced step density and surfaces which had not undergone any special surface step removal treatment. The leakage currents due to tunneling for the two types of capacitors were measured and compared. Atomic steps cause an effective decrease in oxide thickness in those capacitors without reduced step density and this leads to increased leakage current.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Oliver, A. C. and Blakely, J.M., J. Vac. Sci. Technol. B. 18, 2862 (2000).Google Scholar
2. Buchanan, D. A., IBM J. Res. Dev. 43, 245 (1999).Google Scholar
3. Ohmi, T., Kotani, K., Teramoto, A., and Miyashita, M., IEEE Electron Dev. Let. 12, 652 (1991).Google Scholar
4. Chang, Y. C. and Sullivan, E. A., Surface Science 34, 717 (1973).Google Scholar
5. Hartstein, A., Ning, T.H., and Fowler, A. B., Surface Science 58, 178 (1976).Google Scholar
6. Ohmi, T., Miyashita, M., Itano, M., Imaoka, T., and Kawanabe, I., IEEE Trans. Elec. Dev. 39, 537 (1992).Google Scholar
7. Ross, F. M. and Gibson, J. M., Phys. Rev. Lett. 68, 1782 (1992).Google Scholar
8. Fujita, S., Watanabe, H., Maruno, S., and Ichikawa, M., Appl. Phys. Lett. 71, 885, (1997).Google Scholar
9. Tanaka, S., Umbach, C. C., Blakely, J. M., Tromp, R. M., and Makos, M., Appl. Phys. Lett. 69, 1235 (1996).Google Scholar
10. Homma, Y., Hibino, H., Ogino, T., and Aizawa, N., Phys. Rev. B 55, R10237 (1997).Google Scholar
11. Homma, Y., Aizawa, N., and Ogino, T., Jap. J. Appl. Phys. 35, L241 (1996).Google Scholar
12. Lee, D. and Blakely, J., Surface Science 445, 32 (2000).Google Scholar
13. Scott, R. S., Dumin, N. A., Hughes, T. W., Dumin, D. J., and Moore, B. T., IEEE Trans. Elect. Dev. 43, 1133 (1996).Google Scholar
14. Dumin, N. A., Dickerson, K. J., Dumin, D. J., and Moore, B. T., Solid State Electronics 39, 665 (1996).Google Scholar
15. Sze, S. M., Physics of Semiconductor Devices, John Wiley and Sons, Inc., New York, 1981.Google Scholar
16. Tiwari, S., Compound Semiconductor Physics, Academic Press, Inc., Sandiego, CA, 1992.Google Scholar
17. Houssa, M., Nigam, T., Mertens, P. W., and Heyns, M. M., Diffusion and Defect Data Part B 65–66, 249 (1999).Google Scholar
18. Houssa, M., Nigam, T., Mertens, P. W., and Heyns, M., Solid State Electronics 43, 159 (1999).Google Scholar
19. Lin, H.-C., Ying, J.-F., and Yamanaka, T., J. Vac. Sci. Technol. A 15, 790 (1997).Google Scholar