Article contents
Comparison of multi-crystalline silicon PV modules’ performance under augmented solar irradiation
Published online by Cambridge University Press: 27 February 2013
Abstract
In developing photovoltaic (PV) systems with reliable lifetime performances, it is critical to have quantitative knowledge of not just initial properties and performances, but also their performance over the warrantied 25 year lifetime. In 2010, the Science for Energy Technology Workshop, convened by U.S Department of Energy (DOE) Basic Energy Science, prioritized photovoltaic module lifetime and degradation science (L&DS), which serve as the basis for quantitative and mechanistic understanding of lifetime performance. In order to better understand degradation rates and mechanisms of PV systems in the real-world environment, the SDLE SunFarm at Case Western Reserve University has been created, which is a highly instrumented outdoor test facility with 148 PV modules and > 8000 samples on sun for weathering and degradation studies of materials components and systems designed for long-lived energy systems. I-V and power performance of 10 multi-crystalline silicon PV modules from different manufacturers, using baseline and continuous power monitoring and comprehensive weather and solar resource monitoring, to enable time series analysis for insights into performance characteristics and initial degradation.
Five modules from each manufacturer were exposed using mirror augmentation in typical (Cleveland, OH) climatic conditions. The mirror augmentation used geometric concentration factors of 1X, 1.5X and 1.9X of the nominal 1 sun. The effect of mirror augmentation on the modules' performance is reported. A Daystar multi-tracer was used to measure I-V curves of individual modules every 15 minutes while power output under maximum power point tracking was monitored continuously. Monitoring environmental factors (wind speed, wind direction, rainfall, and humidity), solar resource, and module temperatures allow for determination of the effects of these conditions on module power production. Power data was corrected to standard test condition (STC) according to climatic and solar irradiance. Changes in fill factor, short circuit current, open circuit voltage and maximum power are reported for each module. With time series analysis, a better understanding of the module's performance over time and under environmental conditions can be developed.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2013
References
REFERENCES
- 4
- Cited by