Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T00:08:30.478Z Has data issue: false hasContentIssue false

Comparison Of F2 Plasma Chemistries For Deep Etching Of SiC

Published online by Cambridge University Press:  21 March 2011

K. P. Lee
Affiliation:
Materials Science and Engineering University of Florida, Gainesville FL 32611 USA
P. Leerungnawarat
Affiliation:
Materials Science and Engineering University of Florida, Gainesville FL 32611 USA Current address: Lucent Technologies, Reading, PA.
S. J. Pearton
Affiliation:
Materials Science and Engineering University of Florida, Gainesville FL 32611 USA
F. Ren
Affiliation:
Chemical Engineering University of Florida, Gainesville FL 32611 USA
S. N. G. Chu
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill NJ 07974 USA
C.-M. Zetterling
Affiliation:
Department of Electronics, Royal Institute of Technology (KTH), Kista, Sweden
Get access

Abstract

A number of F2-based plasma chemistries (NF3, SF6, PF5 and BF3) were investigated for high rate etching of SiC. The most advantageous of these is SF6, based on the high rate (0.6 μm · min−1) it achieves and its relatively low cost compared to NF3. The changes in electrical properties of the near-surface region are relatively minor when the incident ion energy is kept below approximately 75 eV. At a process pressure of 5 mTorr, the SiC etch rate falls-off by ∼15 % in 30 μm diameter via holes compared to larger diameter holes (> 60 μm diameter) or open areas on the mask.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Properties of SiC, ed. G.L., Harris (Inspec, London, UK 1995), pp. 131149.Google Scholar
2. SiC: A Review of Fundamental Questions and Applications to Current Device Technology, ed. W.J., Choyke, H., Matsunami and G., Pensl (Springer-Verlag, Berlin 1997).Google Scholar
3. See, for example, Shul, R.J., Willison, C.G., Sullivan, C.T., Kravitz, S.H., Zhang, L., and Zipperian, T.E., Proc. Electrochem. Soc. 98–2 564 (1998)Google Scholar
4. Lanois, F., Planson, D., Locatelli, M.L., Lassagne, P., Jaussaud, C. and Chante, J.P., J. Electron. Mater. 28 219 (1999).Google Scholar
5. Yih, P.H. and Steckl, A.J., J. Electrochem. Soc. 140 1813 (1993).Google Scholar
6. Luther, B.P., Ruzyllo, J. and Miller, D.L., Appl. Phys. Lett. 63 171 (1990).Google Scholar
7. Wu, J., Parsons, J.D. and Evans, D.R., J. Electrochem. Soc. 142 669 (1995).Google Scholar
8. Lanois, F., Lassagne, P., Planson, D. and Locatelli, M.L., Appl. Phys. Lett. 69 236 (1996).Google Scholar
9. Donmae, S., Shibahara, K., Nishino, S. and Matsunami, H., Jap. J. Appl. Phys. 24 L873 (1985).Google Scholar
10. Kelner, G., Binari, S.C. and Klein, P.H., J. Electrochem. Soc. 134 253 (1987).Google Scholar
11. Casady, J., Luckowski, E.D., Bozack, M., Sheridan, B., Johnson, R.W. and Williams, J.R., J. Electrochem. Soc. 143 1750 (1996).Google Scholar
12. Palmer, J.W., Davis, R.F., Wallett, T.M. and Bhasin, K.B., J. Vac. Sci. Technol. A4 590 (1986).Google Scholar
13. Steckl, A.J. and Yih, P.H., Appl. Phys. Lett. 60 1966 (1992).Google Scholar
14. Flemish, J.R., Xie, K. and Zhao, J., Appl. Phys. Lett. 64 2315 (1994).Google Scholar
15. Cao, L., Li, B. and Zhao, J.H., Proceeding of the International Conference on SiC and IIINitrides, 1998 (IOP, Bristol, UK, 1998), pp. 97, 833.Google Scholar
16. Flemish, J.R. and Xie, K., J. Electrochem. Soc. 143 2620 (1996).Google Scholar
17. Wang, J.J., Lambers, E.S., Pearton, S.J., Östling, M., Zetterling, C.-M., Grow, J.M. and Ren, F., Solid-State Electron. 42 743 (1998).Google Scholar
18. McDaniel, G.F., Lee, J.W., Lambers, E.S., Pearton, S.J., Holloway, P.H., Ren, F., Grow, J.M., Bhaskaran, M. and Wilson, R.C., J. Vac. Sci. Technol. A14 885 (1997).Google Scholar
19. Wang, J.J., Lambers, E.S., Pearton, S.J., Ostling, M., Zetterling, C.-M., Grow, J.M., Ren, F. and Shul, R.J., J. Vac. Sci, Technol. A16 2204 (1998).Google Scholar
20. Hong, J., Shul, R.J., Zhang, L., Lester, L.F., Cho, H., Hahn, Y.B., Hays, D.C., Jung, K.B., Pearton, S.J., Zetterling, C.-M. and Ostling, M., J. Electron. Mater. 28 196 (1999).Google Scholar
21. Xie, K., Flemish, J.R., Zhao, J.H., Buchwald, W.R. and Casas, L., Appl. Phys. Lett. 67 368 (1995).Google Scholar
22. Leerungnawarat, P., Hays, D.C., Cho, H. Pearton, S.J., Strong, R.M., Zetterling, C.-M. and Östling, M., J. Vac. Sci. Technol. B17 2050 (1999).Google Scholar
23. Khan, F.A. and Adesida, I., Appl. Phys. Lett. 75 2268 (1999).Google Scholar
24. Cho, H., Leerungnawarat, P., Hays, D.C., Pearton, S.J., Chu, S.N.G., String, R.M., Zetterling, C.-M., Ostling, M. and Ren, F., Appl. Phys. Lett. 76 739 (2000).Google Scholar
25. Chabert, P., Proust, N., Perrin, J. and Boswell, R.W., Appl. Phys. Lett. 76 2310 (2000).Google Scholar
26. Yih, P.H. and Steckl, A.J., J. Electrochem. Soc. 142 312 (1996).Google Scholar
27. Muetterties, E.L., The Chemistry of Boron and its Compounds (Wiley, New York, 1967).Google Scholar
28. Cornbridge, D.E.C., Phosphorous: An Outline of its Chemistry, Biochemistry and Technology (Elsevier, New York, 1978).Google Scholar
29. Emelius, H.J., The Chemistry of Fluorine and its Compounds (Academic, New York, 1969).Google Scholar
30. Stacey, M., Tatlow, J.C., and Sharpe, A.G., Advances in Fluorine Chemistry (Butterworths, Washington, DC, 1961), Vol.3.Google Scholar