Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T23:09:21.938Z Has data issue: false hasContentIssue false

A Comparative Study of MOCVD Produced ZnO Films Doped with N, As, P and Sb

Published online by Cambridge University Press:  01 February 2011

Gary S. Tompa
Affiliation:
[email protected], Structured Materials Industries, Inc., R&D, 201 Circle Drive North, Unit 102/103, Piscataway, NJ, 08854, United States, 732-302-9274, 732-302-9275
S. Sun
Affiliation:
[email protected], Structured Materials Industries, Inc., 201 Circle Drive N., Unit 102/103, Piscataway, NJ, 08854, United States
C. E. Rice
Affiliation:
[email protected], Structured Materials Industries, Inc., 201 Circle Drive N., Unit 102/103, Piscataway, NJ, 08854, United States
L. G. Provost
Affiliation:
[email protected], Structured Materials Industries, Inc., 201 Circle Drive N., Unit 102/103, Piscataway, NJ, 08854, United States
D. Mentel
Affiliation:
[email protected], Structured Materials Industries, Inc., 201 Circle Drive N., Unit 102/103, Piscataway, NJ, 08854, United States
Get access

Abstract

ZnO thin films are of interest for an array of applications; including: light emitters, photovoltaics, sensors and transparent contacts among others. Of particular interest is the potential to produce p-type layers from which p-n junction devices could be routinely produced. While it is fairly routine for MOCVD to produce n-type films with doping concentrations in the 10E20 cm-3 range and resistivities below 10E-3 ohm-cm; it is very difficult to produce measurable p-type ZnO. We report on our efforts with doping films p-type using N gas sources and metalorganic sources of P, As, and Sb. Films showing acceptor bands by photoluminescence have been demonstrated; however reliable electrical measurements remain difficult. Specific problems include achieving low resistance ohmic contacts, accounting for the photo-responsiveness of ZnO films and sensitivity limits in Hall measurements of low-doped and compensated materials. The presentation will review deposition parameters, produced and processed films and material characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Look, D.C., Mater. Sci. and Eng. B80, 383 (2001).Google Scholar
2. Minegishi, , Koiwai, Y., Kikuchi, Y., Yano, K., Kasuga, M. and Shimizu, R., Jpn. J. Appl. Phys., 36, L1453 (1997).Google Scholar
3. Xiong, G. et al, Appl. Phys. Lett. 80, 1195 (2002); K. H. Bang et al, Appl. Surf. Sci. 210, 177 (2003); A. V. Singh et al, J. Appl. Phys. 93, 396 (2003); J. Huang et al, J. Mater. Sci. Lett. 22, 249 (2003); K-K. Kim et al, Appl. Phys. Lett. 83, 63 (2003); J. Lu et al, Mater. Lett. 57, 3311 (2003); D-K Hwang et al, J. Crystal Growth 254, 449 (2003); C-C. Lin et al, Appl. Phys. Lett. 84, 5040 (2004); F. Zhuge et al, Appl. Phys. Lett. 87, 092103 (2004); E. Kamińska et al, Phys. Stat. Sol. C. 2, 1119 (2005); Y. Nakano et al, Appl. Phys. Lett. 88, 172103 (2006).Google Scholar
4. Joseph, M. et al, Jpn. J. Appl. Phys. 38, L1205 (1999); Y. R. Ryu et al, J. Crystal Growth 216, 330 (2000); M. Joseph et al, Physica B 302-303, 140 (2001); X-L Guo, et al, J. Crystal Growth 223, 135 (2001), and Optical Materials 19, 229 (2002); 1V. Vaithianathan et al, J. Appl. Phys. 98, 043519 (2005), Appl. Phys. Lett. 86, 062101 (2005), and J. Cryst. Growth 287, 85 (2006); J. G. Lu et al, Appl. Phys. Lett. 88, 222114 (2006); N. Xu et al, J. Vac. Sci. Technol. A. 24, 517 (2006).Google Scholar
5. Ashrafi, A. B. M. A. et al, Jpn. J. Appl. Phys. 41, L1281 (2002); D. C. Look et al, Appl. Phys. Lett. 81 (10), 1830-1832 (2002); 1F. X. Xiu et al, Appl. Phys. Lett. 87, 152101 (2005); H. W. Liang et al, Phys. Stat. Sol. A 202, 1060 (2005); F. X. Xiu et al, Appl. Phys. Lett. 88, 052106 (2006); E. Przeździecka et al, Phys. Stat. Sol. C 3, 988 (2006).Google Scholar
6. 1C.Rice, E. et al, Materials Research Society Symp. Proc. 764, C3.10.1 (2003). X. Li et al, J. Vac. Sci. Technol. A 21, 1342 (2003), and Electrochem. and Solid State Lett. 6, C56 (2003); J. Wang et al, J. Cryst. Growth 255, 293 (2003); S. Sun et al, J. Electron. Materials 35, 766 (2006); I. Volintiru et al, Appl. Phys. Lett. 89, 022110 (2006).Google Scholar
7. Tompa, G. S., Provost, L. G., and Cuchiaro, J. D., Proc. MRS Workshop on Transparent Conducting Oxides, June 2000.Google Scholar
8. Forsythe, E. W., Gao, Y., and Tompa, G. S., J. Vacuum Sci. Technol. A17 (1999) 1761.Google Scholar
9. Rice, C.E., Tompa, G.S., Provost, L.G., Sbrockey, N., and Cuchiaro, J., Materials Research Soc. Proc., San Francisco CA, paper C3-10 (2003).Google Scholar
10. Sbrockey, N. M., Cuchiaro, J. D., Hoerman, B. H., Provost, L. G., Rice, C. E., Sun, S., Tompa, G. S., Ganesan, S., Nause, J. and Nemeth, W. B., III-Vs Review, 17(7), 23 (2004).Google Scholar
11. 1 http://bridgetec.com/egk.htmlGoogle Scholar