Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T22:41:43.366Z Has data issue: false hasContentIssue false

Combinatorial Studies of Switching and Solid-Phase Crystallization in Amorphous Silicon

Published online by Cambridge University Press:  26 February 2011

Paul Stradins
Affiliation:
[email protected], NREL, 1617 Cole Blvd., Golden, CO, 80401, United States
Howard M. Branz
Affiliation:
[email protected], National Renewable Energy Laboratory, United States
Jian Hu
Affiliation:
[email protected], National Renewable Energy Laboratory, United States
Scott Ward
Affiliation:
[email protected], National Renewable Energy Laboratory, United States
Qi Wang
Affiliation:
[email protected], National Renewable Energy Laboratory, United States
Get access

Abstract

Combinatorial approaches are successfully applied for the optimization of electric write-once, thin-film Si antifuse memory devices, as well as for studying the solid-phase epitaxy kinetics of amorphous silicon on c-Si. High forward, low reverse current thin film Si diode deposition recipes are selected using cross-strips of different combinations of amorphous and microcrystalline doped layers, as well as a thickness-wedged intrinsic a-Si:H buffer layer. By studying switching in thickness-wedged a-Si:H layers, it is found that switching requires both a critical field and a critical bias voltage across the metallic contacts. Solid-phase epitaxy speed has a non-linear dependence on the film thickness, which is easily observed by optical image monitoring and analysis in wedged a-Si:H films on c-Si wafers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hanak, J. J., J. Mater. Sci. 5 (1970) 964.Google Scholar
2. Xiang, X. D., Schultz, P. G., Physica C 282 (1997) 428.Google Scholar
3. Wang, Q., Perkins, J., Branz, H. M., Alleman, J., Duncan, C., Ginley, D., Applied Surface Science, 189 (2002) 271.Google Scholar
4. Wang, Q., Ward, S., Duda, A., Hu, J., Stradins, P., Crandall, R. S., and Branz, H.M., Applied Physics Letters, 85 (2004) 21222.Google Scholar
5. Wang, Q., Ward, S., Duda, A., Hu, J., Stradins, P., Crandall, R. S., Branz, H. M., Jeffrey, F., Lou, H., Perlov, C., Jackson, W. B., Mei, P. and Taussig, C., Mat. Res. Soc. Proc. 862 (2005) 709.Google Scholar
6. Stradins, P., Branz, H. M., Jackson, W. B., Crandall, R. S., Hu, J., and Wang, Q.. Mat. Res. Soc. Proc. 808 (2004) 465.Google Scholar
7. Stradins, P., Young, D., Branz, H. M., Page, M. and Wang, Q., Mat. Res. Soc. Proc. 862 (2005) 227.Google Scholar
8. Lecomber, P. G., Owen, A. E., Spear, W. E., Hajto, J., Snell, A. J., Choi, W. K., Rose, M. J. and Reynolds, S., J. Non-Cryst. Solids 77–8 (1985) 1373.Google Scholar
9. Fuhs, W., Gall, S., Rau, B., Schmidt, M. and Schneider, J., Sol. Energy 77 (2004) 961.Google Scholar
10. Aberle, A. G., Straub, A., Widenborg, P. I., Sproul, A. B., Huang, Y. and Campbell, P., Prog. Photovoltaics 13 (2005) 37.Google Scholar
11. Branz, H. M., Teplin, C. W., Jones, K. M., Al-Jassim, M. M., Dabney, M., Iwaniczko, E., Stradins, P., and Ginley, D. S., 21st International Conference on the Amorphous and Nanocrystaline Semiconductors, Lisbon, 2005, submitted to J. of Non-Crystalline Solids.Google Scholar
12. Wang, Q., Tessler, L. R., Moutinho, H., To, B., Perkins, J., Han, D., Ginley, D. and Branz, H. M., Mat. Res. Soc. Proc. 762 (2003) A9.1.2.Google Scholar
13. Stradins, P., Jackson, W. B., Branz, H. M., Hu, J., Perkins, C. L. and Wang, Q., Mat. Res. Soc. Proc. 762 (2003) A2.4.Google Scholar
14. Bauer, M., Oehme, M., Sauter, M., Eifler, G. and Kasper, E., Thin Solid Films 364 (2000) 238.Google Scholar