Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T05:03:21.158Z Has data issue: false hasContentIssue false

CO Oxidation Catalyzed by Pd-doped BaCeO3: Coexistence of Langmuir-Hinshelwood and BaCeO3-mediated Mechanisms

Published online by Cambridge University Press:  31 January 2011

Xiaoying Ouyang
Affiliation:
[email protected], University of California Santa Barbara, Chemistry and Biochemistry, Santa Barbara, California, United States
Susannah Scott
Affiliation:
[email protected], University of California Santa Barbara, Chemistry and Biochemistry, Santa Barbara, California, United States
Get access

Abstract

The rate law for CO oxidation over Pd-substituted BaCeO3 was studied. Under CO-rich conditions over a range of pressures and temperatures, changing reaction orders for both CO and O2 suggest the coexistence of both Langmuir-Hinshelwood and BaCeO3-mediated mechanisms. The latter dominates at high P(CO)/P(O2), while both mechanisms contribute significantly at low P(CO)/P(O2). Under CO-lean conditions, the Langmuir-Hinshelwood mechanism dominates the kinetics. The importance of the BaCeO3-mediated mechanism increases with temperature. Steady-state isotopic transient kinetic analysis (SSITKA) using 18O2 confirmed the participation of labile lattice oxygen, thus BaCeO3 behaves as a BaO-stabilized form of CeO2.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kaspar, J., Fornasiero, P., and Graziani, M., Catal. Today 50, 285 (1999).Google Scholar
[2] Miki, T., Ogawa, T., Haneda, M., Kakuta, N., Ueno, A., Tateishi, S., Matsuura, S., and Sato, M., J. Phys. Chem. 94, 6464 (1990).Google Scholar
[3] Fornasiero, P., Dimonte, R., Rao, G. R., Kaspar, J., Meriani, S., Trovarelli, A., and Graziani, M., J. Catal. 151, 168 (1995).Google Scholar
[4] Trovarelli, A., Catal. Rev. Sci. Eng. 38, 439 (1996).Google Scholar
[5] Hori, C. E., Permana, H., Y, K.. Ng, S., Brenner, A., More, K., Rahmoeller, K. M., and Belton, D., Appl. Catal. B 16, 105 (1998).Google Scholar
[6] Fornasiero, P., Dimonte, R., Rao, G. R., Kaspar, J., Meriani, S., Trovarelli, A., and Graziani, M., J. Catal. 151, 168 (1995).Google Scholar
[7] Stark, W. J., Maciejewski, M., Madler, L., Pratsinis, S. E., Baiker, A., J. Catal. 220, 35 (2003).Google Scholar
[8] Krishna, K., Bueno-Lopez, A., Makkee, M., and Moulijn, J. A., Appl. Catal. B 75, 189 (2007); 75, 201 (2007); 75, 210 (2007).Google Scholar
[9] Machida, M., Murata, Y., Kishikawa, K., Zhang, D., and Ikeue, K., Chem. Mater. 20, 4489 (2008).Google Scholar
[10] Trovarelli, A., Dolcetti, G., Deleitenburg, C., Kaspar, J., Finetti, P., and Santoni, A., J. Chem. Soc. Faraday. Trans. 88, 1311 (1992).Google Scholar
[11] Deleitenburg, C., Trovarelli, A., J. Catal. 156, 171 (1995).Google Scholar
[12] Bernal, S., Calvino, J. J., Cauqui, M. A., Gatica, J. M., Larese, C., Omil, J. A. P., and Pintado, J. M., Catal. Today 50, 175 (1999).Google Scholar
[13] Penner, S., Wang, D., Podloucky, R., Schlogl, R., and Hayek, K., Phys. Chem. Chem. Phys. 6, 5244 (2004).Google Scholar
[14] Fuchs, M., Jenewein, B., Penner, S., Hayek, K., Rupprechter, G., Wang, D., Schlogl, R., Calvino, J. J., Bernal, S., Appl. Catal. A 294, 279 (2005).Google Scholar
[15] Yeung, C. M. Y., Tsang, S. C., J. Phys. Chem. C 113, 6074 (2009).Google Scholar
[16] Bunluesin, T., Cordatos, H., Gorte, R. J., J. Catal. 157, 222 (1995).Google Scholar
[17] He, H., Dai, H. X., Ng, L. H., Wong, K. W., Au, C. T., J. Catal. 206, 1 (2002).Google Scholar
[18] Madier, Y., Descorme, C., Le Govic, A. M., and Duprez, D., J. Phys. Chem. B 103, 10999 (1999).Google Scholar
[19] Baidya, T., Gupta, A., Deshpandey, P. A., Madras, G., and Hegde, M. S., J. Phys. Chem. C 113, 4059 (2009).Google Scholar
[20] Camellone, M. F., and Fabris, S., J. Am. Chem. Soc. 131, 10473 (2009).Google Scholar
[21] Liang, Q., Wu, X., Weng, D., Xu, H., Catal. Today 139, 113 (2008).Google Scholar
[22] Machida, M., Murata, Y., Kishikawa, K., Zhang, D. J., and Ikeue, K., Chem. Mater. 20, 4489 (2008).Google Scholar
[23] Li, K. Z., Wang, H., Wei, Y. G., and Yan, D. X., J Phys. Chem. C 113, 15288 (2009).Google Scholar
[24] Iwahara, H., Uchida, H., Ono, K., and Ogaki, K., J. Electrochem. Soc. 135, 529 (1988).Google Scholar
[25] Giannici, F., Longo, A., Balerna, A., and Martorana, A., Chem. Mater. 21, 597 (2009).Google Scholar
[26] Cammarata, A., Martorana, A., and Duca, D., J. Phys. Chem. A 113, 6381 (2009).Google Scholar
[27] Li, J., Singh, U. G., Bennett, J. W., Page, K., Weaver, J. C., Zhang, J. P., Proffen, T., Rappe, A. M., Scott, S., and Seshadri, R., Chem. Mater. 19, 1418 (2007).Google Scholar
[28] Singh, U. G., Li, J., Bennett, J. W., Rappe, A. M., Seshadri, R., and Scott, S. L., J. Catal. 249, 349 (2007).Google Scholar
[29] Juszczyk, W., Malinowski, A., and Karpinski, Z., Appl. Catal. A 166, 311 (1998).Google Scholar
[30] Rodriguez, J., and Goodman, D. Wayne, Surf. Sci. Rep. 14, 1 (1991).Google Scholar
[31] Bunluesin, T., Putna, E. S., and Gorte, R. J., Catal. Lett. 41, 1 (1996).Google Scholar
[32] Bunluesin, T., Gorte, R. J., and Graham, G. W., Appl. Catal. B 14, 105 (1997).Google Scholar
[33] Ouyang, X. and Scott, S., ChemCatChem (to be submitted).Google Scholar