Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T18:28:25.906Z Has data issue: false hasContentIssue false

CMOS Compatible Growth of Carbon Nanotubes and Their Application in Field-Effect Transistors

Published online by Cambridge University Press:  22 February 2012

T. Uchino
Affiliation:
Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai, 982-8577, Japan School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.
G. N. Ayre
Affiliation:
School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, U.K.
D. C. Smith
Affiliation:
School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, U.K.
J. L. Hutchison
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
C. H. de Groot
Affiliation:
School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.
P. Ashburn
Affiliation:
School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.
Get access

Abstract

The metal-catalyst-free growth of carbon nanotubes (CNTs) using chemical vapor deposition and the application in field-effect transistors (FETs) is presented. The CNT growth process used a 3-nm-thick Ge layer on SiO2 that was subsequently annealed to produce Ge nanoparticles. Raman measurements show the presence of radial breathing mode (RBM) peaks and the absence of the disorder induced D-band, indicating single walled CNTs (SWNTs) with a low defect density. The synthesized CNTs are used to fabricate CNTFETs and the best device has a state-of-the-art on/off current ratio of 3×108 and a steep sub-threshold slope of 110 mV/decade.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Appenzeller, J., Proc. IEEE 96, 201 (2008).Google Scholar
2. Besteman, K., Lee, J., Wiertz, F., Heering, H., and Dekker, C., Nano. Lett. 3, 727 (2003).Google Scholar
3. Kreupl, F., Graham, A., Duesberg, G., Steinhögl, W., Liebau, M., Unger, E., and Hönlein, W., Microelectronic Engineering 64, 399 (2002).Google Scholar
4. Haque, M., Teo, K., Rupensinghe, N., Ali, S., Haneef, I., Maeng, S., Park, J., Udrea, F., and Milne, W., Nanotechnology 19, 25607 (2008).Google Scholar
5. Nikolaev, P., Bronikowski, M., Bradley, R., Rohmund, F., Colbert, D., Smith, K., and Smalley, R., Chem. Phys. Lett. 313, 91 (1999).Google Scholar
6. Kusunoki, M., Rokkaku, M., and Suzuki, T., Appl. Phys. Lett. 71, 2620 (1997).Google Scholar
7. Botti, S., Ciardi, R., Terranova, M., Piccirillo, S., Sessa, V., Rossi, M., and Vittori-Antisari, M., Appl. Phys. Lett. 80, 1441 (2002).Google Scholar
8. Uchino, T., Bourdakos, K. N., de Groot, C. H., Ashburn, P., Kiziroglou, M. E., Dilliway, G. D., and Smith, D. C., Appl. Phys. Lett. 86, 233110 (2005).Google Scholar
9. Takagi, D., Hibino, H., Suzuki, S., Kobayashi, Y., and Homma, Y., Nano Lett. 7, 2272 (2007).Google Scholar
10. Uchino, T., Ayre, G., Smith, D. C., Hutchison, J. L., de Groot, C. H., and Ashburn, P., J. Electrochem. Soc. 156, K144 (2009).Google Scholar
11. Liu, B., Ren, W., Gao, L., Li, S., Pei, S., Liu, C., Jiang, C., and Cheng, H., J. Am. Chem. Soc. 131, 2082 (2009).Google Scholar
12. Huang, S., Cai, Q., Chen, J., Qian, Y., and Zhang, L., J. Am. Chem. Soc. 131, 2094 (2009).Google Scholar
13. LeGoues, F., Rosenberg, R., and Meyerson, B., Appl. Phys. Lett. 54, 644 (1989).Google Scholar
14. Aharonovich, I., Lifshitz, Y., and Tamir, S., Appl. Phys. Lett. 90, 263109 (2007).Google Scholar
15. Carter, P., Gleeson, B., and Young, D., Oxid. Met. 56, 375 (2001).Google Scholar
16. Uchino, T., Hutchison, J. L., Ayre, G., Smith, D. C., de Groot, C. H., and Ashburn, P., Jpn. J. Appl. Phys. 50, 04DN02 (2011).Google Scholar
17. Jorio, A., Fantini, C., Dantas, M., Pimenta, M., Filho, A., Samsonidze, G., Brar, V., Dresselhaus, G., Dresselhaus, M., Swan, A., Unlu, M., Goldberg, B., and Saito, R., Phys. Rev. B 66, 115411 (2002).Google Scholar
18. Rispal, L. and Schwalke, U., IEEE Electron Device Lett. 29, 1349 (2008).Google Scholar
19. Chen, Z., Appenzeller, J., Knoch, J., Lin, Y., and Avouris, P., Nano Lett. 5, 1497 (2005).Google Scholar
20. Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H., Nature 424, 654 (2003).Google Scholar
21. Yang, M., Teo, K., Milne, W., and Hasko, D., Appl. Phys. Lett. 87, 253116 (2005).Google Scholar
22. Guo, J., Datta, S., and Lundstrom, M., IEEE Tran. Electron Devices 51, 172 (2004).Google Scholar