Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:47:16.832Z Has data issue: false hasContentIssue false

Clustering Equilibrium and Deactivation Kinetics in As doped Si

Published online by Cambridge University Press:  17 March 2011

Dario Nobili
Affiliation:
CNR-LAMEL Institute, Via Gobetti 101-40129 Bologna, Italy
Sandro Solmi
Affiliation:
CNR-LAMEL Institute, Via Gobetti 101-40129 Bologna, Italy
Jenta Shao
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
Marco Merli
Affiliation:
INFM, University of Ferrara, Ferrara, Italy
Get access

Abstract

Clustering equilibrium was studied on silicon on insulator specimens uniformly doped with As at concentrations CAs up to 7.6 × 1020 cm−3. Values of the carrier density n* after equilibration at 700, 800 and 900°C are reported. It is shown that both the concentration and the temperature dependence of n* can be accurately simulated by a simple cluster model detailed in the Appendix. The analysis of the clustering kinetics of these compositions was performed at temperatures in the range 550 to 800°C. It is found that at 800°C the kinetics accurately complies with the rate equation:

-dn/ dt = A{exp[-(E-αn)/kT] - (n0- n)/( n0- n*) exp[-(E-αn*)/kT]

which is the one reported in Ref.[14] complemented by the second term on the right to account for the declustering process. Deviations leading to rates lower than predicted by the above equation are observed by annealing at lower temperatures. The dependence of this phenomenon on composition and temperature is reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nobili, D., Solmi, S., Parisini, A., Derdour, M., Armigliato, A., and Moro, L., Phys. Rev. B, 49, 2477 (1994)10.1103/PhysRevB.49.2477Google Scholar
2. Derdour, M., Nobili, D., and Solmi, S., J. Electrochem. Soc., 138, 857 (1991)10.1149/1.2085692Google Scholar
3. Solmi, S. and Nobili, D., J. Appl. Phys. 83, 2484 (1998)10.1063/1.367008Google Scholar
4. Hu, S. M. in Atomic diffusion in Semiconductors, Shaw, D. ed., Plenum Press, London (1973) pp 217321.10.1007/978-1-4615-8636-4_5Google Scholar
5. Fair, R. B., and Weber, G. R., J. Appl. Phys. 44, 273 (1973)10.1063/1.1661873Google Scholar
6. Tsai, M. Y., Morehead, F. F., Baglin, J. E. E., Michel, A. E., J. Appl. Phys. 51, 3230 (1980)10.1063/1.328078Google Scholar
7. Pandey, K. C., Erbil, A., Cargill, G. S. III, Boehme, R. F. and Vanderbilt, D., Phys. Rev. Lett. 61, 1282 (1988)10.1103/PhysRevLett.61.1282Google Scholar
8. Ramamoorthy, M., and Pantelides, S. T., Phys. Rev. Lett. 76, 4573 (1996)Google Scholar
9. Berding, M. A. and Sher, A., Phys. Rev. B. 58, 3853 (1998).10.1103/PhysRevB.58.3853Google Scholar
10. Berding, M. A., Sher, A., Schilfgaarde, M. Van, Rousseau, P. M. and Spicer, W. E., Appl. Phys. Lett. 72, 1492 (1998)10.1063/1.121036Google Scholar
11. Bunea, M. and Dunham, S. T., Mat. Res. Soc. Symp. Proc. Vol 469, 353 (1997)10.1557/PROC-469-353Google Scholar
12. Solmi, S., Nobili, D. and Shao, J., J. Appl. Phys. 87, 658 (2000)10.1063/1.371922Google Scholar
13. Leitoila, A., Gibbons, J. F., Magee, J. T., Peng, J., Hong, J. D., Appl. Phys. Lett. 35, 532 (1979)10.1063/1.91198Google Scholar
14. Nobili, D., Solmi, S., Merli, M. and Shao, J., J. Electrochem. Soc. 146, 4246 (1999)10.1149/1.1392622Google Scholar
15. Mousty, F., Ostoja, P. and Passari, L., J. Appl. Phys. 45, 4576 (1974)10.1063/1.1663091Google Scholar
16. Bauer, H., Pichler, P. and Ryssel, H., IEEE Trans. Semicond. Manufact. 8, 4414 (1995)10.1109/66.475183Google Scholar
17. Guerrero, E., Potzl, H., Tielert, R., Grasserbauer, M. and Stingeder, G., J. Electrochem. Soc. 129, 1826 (1982)10.1149/1.2124302Google Scholar