Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T08:25:22.640Z Has data issue: false hasContentIssue false

Cl2-Based ECR Etching of InGaP, AlInP and AIGaP

Published online by Cambridge University Press:  10 February 2011

J. Hong
Affiliation:
University of Florida, Gainesville FL 32611
J. W. Lee
Affiliation:
University of Florida, Gainesville FL 32611
S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 32611
C. Santana
Affiliation:
University of Florida, Gainesville FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Gainesville FL 32611
W. S. Hobson
Affiliation:
Lucent Technologies Bell Laboratories, Murray Hill NJ 07974.
F. Ren
Affiliation:
Lucent Technologies Bell Laboratories, Murray Hill NJ 07974.
Get access

Abstract

High microwave power (1000W) Electron Cyclotron Resonance (ECR) Cl2/Ar plasma produce etch rates for In0.5Ga0.5P, Al0.5In0.5P and Al0.5Ga0.5P of ˜1um/min. at low pressure (1.5mTorr), moderate rf power levels (150W) and room temperature. Addition of Cl2 into Ar makes much smoother etched surface morphology as well as increasing the etch rate. All parameters, including microwave power, chamber pressure and rf power increase the etch rate of these alloys. Especially, there is at least a minimum rf power in order to get much higher etch rate with increasing microwave power. AlGaP in Cl2/Ar discharges has lower etch rates than InGaP or AlInP, which is similar to the results based on CH4/H2/Ar plasma chemistries. The Cl2/Ar chemistry enables smooth, high-rate etching without the need for polymer addition and thus simplifies the processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuo, J. M., Thin Solid Films 231, p. 158 (1993), and references therein.Google Scholar
2. Hafich, M. J., Lee, H. Y., Crumbaker, T. E., Vogt, T. J., Silvestre, P. and Robinson, G. Y., J. Vac. Sci. Technol. B 10, p. 969 (1992)Google Scholar
3. Ozasa, K., Yuri, M. and Matsunami, H., J. Cryst. Growth 102, p. 31 (1990)Google Scholar
4. Chan, Y. J., Pavlidis, D., Razheghi, M. and Omnes, F., IEEE Trans Electron. Dev. ED-37, p. 2141 (1990)Google Scholar
5. Kuo, J. M., and Chan, Y. J., J. Vac. Sci. Technal. B 11, p. 976 (1993)Google Scholar
6. Mondry, M. J. and Kroemer, H., IEEE Electron. Dev. Lett. EDL-6, p. 175 (1985)Google Scholar
7. Watanabe, M. O. and Ohba, Y., Appl. Phys. Lett. 50, p. 906 (1987)Google Scholar
8. Liu, W. and Fan, S. K., IEEE Electron. Dev. Lett. EDL-13, p. 510 (1992)Google Scholar
9. Delage, S. L., DiForte-Poisson, M. A., Blanck, H., Brylinski, C., Chartier, E. and Collot, P., Electron. Lett. 27, p. 253 (1991)Google Scholar
10. Pletschen, W., Bachem, K. H. and Lautybach, T., Proc. Mat. Res. Soc. Symp. Proc 240, p. 493 (1992)Google Scholar
11. Hobson, W. S., Ren, F., Lothian, J. R. and Pearton, S. J., Semicond. Sci. Technol. 7, p. 598 (1992)Google Scholar
12. Abernathy, C.R., Ren, F., Wisk, P., Pearton, S. J. and Esagui, R., Appl. Phys. Lett. 61, p. 1092 (1992)Google Scholar
13. Ikeda, M., Mori, Y., Sato, H., Kaneko, K. and Watanabe, N., Appl, Phys. Lett. 47, p. 1027 (1985)Google Scholar
17. Hobson, W. S., Proc. Symp. Wide Bandgap Semiconductors and Devices (ECS, Pennington, NJ) pp. 2642 (1995)Google Scholar
18. Groves, S. J., Walpole, J. N. and Missaggia, C. J., Appl. Phys. Lett. 61, p. 255 (1992)Google Scholar
19. Hanson, A. W., Stockman, S. A. and Stillman, G. E., IEEE Electron. Dev. Lett. 14, p. 25 (1993)Google Scholar
20. Bour, D.P., in Quantum Well Lasers, ed. Zory, P. S. (Academic Press, NJ 1993) pp. 415460 Google Scholar
21. Lothian, J. R., Kuo, J. M., Hobson, W. S., Lane, E., Ren, F. and Pearton, S. J., J. Vac. Sci. Technol. B 10, p. 1061 (1992)Google Scholar
22. Lothian, J. R., Kuo, J. M., Ren, F. and Pearton, S. J, J. Electron. Mater. 21, p. 441 (1992)Google Scholar
23. Lee, J. W., Pearton, S. J., Abernathy, C. R., Hobson, W. S., Ren, F. and Wu, C. S., Solid State Electron. 38, p. 1871 (1995)Google Scholar
24. Pearton, S. J., Hobson, W. S., Kuo, J. M., Luftman, H. S., Katz, A. and Ren, F., Appl. Phys. Lett. 60, p. 1318 (1992)Google Scholar
25. Pearton, S. J., Kuo, J. M., Ren, F., Katz, A. and Perley, A., Appl. Phys. Lett. 59, p. 1467 (1991)Google Scholar
26. Ren, F., , J.. Kuo, M., Pearton, S. J. and Fullowan, T. R., J. Electron. Mater. 21, p. 243 (1992)Google Scholar
27. McNevin, S. C., J. Vac. Sci. Technol. B 4, p. 1216 (1986)Google Scholar
28. Ren, F., Hobson, W. S., Lothian, J. R., Lopata, J., Caballero, J. A., Pearton, S. J. and Cole, M. W., Appl. Phys. Lett. 67, p. 2497 (1995)Google Scholar
29. Hobson, W. S., Mat. Sci. For. 148/149, p. 27 (1994)Google Scholar
30. Abernathy, C. R., J. Vac. Sci. Technol. A 11, p. 869 (1993)Google Scholar
31. Salimian, S. and Cooper, C. R. III, J. Electrochem. Soc. 136, p. 2420 (1989)Google Scholar
32. Pearton, S. J., Nakano, T. and Gottscho, R. A., J. Appl. Phys. 69, p. 4206 (1991)Google Scholar