Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T01:11:08.075Z Has data issue: false hasContentIssue false

Circumferential Arc-Shaped Microcracks in Haversian Bone: Lead-Uranyl Acetate Staining for Micro-CT Imaging

Published online by Cambridge University Press:  31 January 2011

Vincent Ebacher
Affiliation:
[email protected], University of British Columbia, Materials Engineering, Vancouver, Canada
Rizhi Wang
Affiliation:
[email protected], University of British Columbia, Materials Engineering, Vancouver, Canada
Get access

Abstract

Despite much progress in recent years, the nature of microcracking in bone at the nano-meter scale is still not well understood. This is partly due to the complexity of bone's hierarchical structure, but also to the difficulty of detecting cracks at very fine scales. Bone microcracking is typically detected using fluorescent dye staining techniques followed by optical or laser microscopy examinations. However, fluorescence-based methods are limited to sub-micron resolution and do not fit three-dimensional imaging such as micro-CT or high resolution imaging such as electron microscopy. This pilot study explores the potential of a heavy metal staining technique to label nano-sized cracks in bone that could be detected by electron microscopy and, albeit at a larger scale, by micro-computed tomography. Upon further development, the method described here may lead to the nano-meter scale characterization of bone microcracking.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zioupos, P., Currey, J.D. and Sedman, A.J., Med. Eng. Phys. 16, 203 (1994).10.1016/1350-4533(94)90039-6Google Scholar
2 Gao, H., Ji, B., Jager, I.L., Arzt, E. and Fratzl, P., Proc. Natl. Acad. Sci. U.S.A. 100, 5597 (2003).10.1073/pnas.0631609100Google Scholar
3 Nalla, R.K., Kinney, J.H. and Ritchie, R.O., Nat. Mater. 2, 164 (2003).10.1038/nmat832Google Scholar
4 Gupta, H.S., Seto, J., Wagermaier, W., Zaslansky, P., Boesecke, P. and Fratzl, P., Proc. Natl. Acad. Sci. U.S.A. 103, 17741 (2006).10.1073/pnas.0604237103Google Scholar
5 Peterlik, H., Roschger, P., Klaushofer, K. and Fratzl, P., Nat. Mater. 5, 52 (2006).10.1038/nmat1545Google Scholar
6 Zioupos, P. and Currey, J.D., J. Mater. Sci. Lett. 15, 991 (1996).10.1007/BF00241446Google Scholar
7 Fazzalari, N.L., Forwood, M.R., Manthey, B.A., Smith, K. and Kolesik, P., Bone 23, 373 (1998).10.1016/S8756-3282(98)00111-2Google Scholar
8. Bozzola, J.J. and Russell, L.D., in Electron microscopy: principles and techniques for biologists, 2nd ed. (Jones and Bartlett, Boston, 1999), 670p. 9. Burr, D.B. and Stafford, T., Clin. Orthop. Relat. Res. 260, 305 (1990).Google Scholar
10 Schaffler, M.B., Pitchford, W.C., Choi, K. and Riddle, J.M., Bone 15, 483 (1994).10.1016/8756-3282(94)90271-2Google Scholar
11 Parkesh, R., T. Clive Lee, Gunnlaugsson, T. and Gowin, W., J. Biomech. 39, 1552 (2006).10.1016/j.jbiomech.2005.04.003Google Scholar
12 Leng, H., Wang, X., Ross, R.D., Niebur, G.L. and Roeder, R.K., J. Mech. Behav. Biomed. Mater. 1, 68 (2008).10.1016/j.jmbbm.2007.06.002Google Scholar
13. Tang, S.Y. and Vashishth, D., Bone 40, 1259 (2007).10.1016/j.bone.2006.10.031Google Scholar
14 Ebacher, V. and Wang, R., Adv. Funct. Mater. 19, 57 (2009).10.1002/adfm.200801234Google Scholar
15. Reilly, G.C. and Currey, J.D., J. Exp. Biol. 202, 543 (1999).Google Scholar
16 Zioupos, P., Hansen, U. and Currey, J.D., J. Biomech. 41, 2932 (2008).10.1016/j.jbiomech.2008.07.025Google Scholar
17 Ebacher, V., Tang, C., McKay, H., Oxland, T.R., Guy, P. and Wang, R., Bone 40, 1265 (2007).10.1016/j.bone.2006.12.065Google Scholar
18G. Gimenez-Martin, Risueno, M.C. and J.F. Lopez-Saez, Experientia 23, 316 (1967).Google Scholar