Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T02:10:20.086Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Boron Phosphide Thin Films

Published online by Cambridge University Press:  25 May 2012

Julia K.C. Abbott
Affiliation:
Dept. of Chemistry, University of Tennessee, Knoxville, TN, USA
J. Daniel Brasfield
Affiliation:
Dept. of Chemistry, University of Tennessee, Knoxville, TN, USA Development Division, Y-12 National Security Complex, Oak Ridge, TN, USA
Philip D. Rack
Affiliation:
Dept. of Materials Science Engineering, University of Tennessee, Knoxville, TN, USA
Gerd J. Duscher
Affiliation:
Dept. of Materials Science Engineering, University of Tennessee, Knoxville, TN, USA
Charles S. Feigerle
Affiliation:
Dept. of Chemistry, University of Tennessee, Knoxville, TN, USA
Get access

Abstract

Boron Phosphide (BP) is a promising material for use as a room temperature semiconductor detector of thermal neutrons. The absorption of a thermal neutron by a 10B nucleus in BP can yield 2.3MeV of energy which in solid state BP can yield ∼0.5 million electron-hole pairs that would be detectable with minimal amplification in a device. BP thin films are grown according to the net reaction below in a cold wall chemical vapor deposition (CVD) reactor: Thin film depositions are performed using diborane and phosphine with a balance of hydrogen gas at near atmospheric pressure with RF induction heating. The resultant BP films are characterized by Raman, XRD, SEM, TEM and TEM-EELS for chemical composition, surface and bulk morphology. BP growths on Si and SiC substrates are compared. SiC provides reduced lattice mismatch for growth of BP and growth of heteroepitaxial BP on SiC will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dalui, S., Hussain, S., Varma, S., Paramanik, D., and Pal, A.K., Thin Solid Films 516, 4958 (2008).Google Scholar
2. Kumashiro, Y., Yokoyama, T., Sakamoto, T., and Fujita, T., J Solid State Chem 133, 269 (1997).Google Scholar
3. Kumashiro, Y., Yao, T., and Gonda, S., J Cryst Growth 70, 515 (1984).Google Scholar
4. Chu, T.L., Jackson, J.M., and Smeltzer, R.K., J Cryst Growth 15, 254 (1972).Google Scholar
5. Kumashiro, Y., Okada, Y., and Gonda, S., J Cryst Growth 70, 507 (1984).Google Scholar
6. Kumashiro, Y., Okada, Y., and Okumura, H., J Cryst Growth 132, 611 (1993).Google Scholar
7. Shohno, K., Ohtake, H., and Bloem, J., J Cryst Growth 45, 187 (1978).Google Scholar
8. Kumashiro, Y., Yokoyama, T., Sato, A., and Ando, Y., J Solid State Chem 133, 314 (1997).Google Scholar
9. Kumashiro, Y., Sato, K., Chiba, S., Yamada, S., Tanaka, D., Hyodo, K., Yokoyama, T., and Hirata, K., J Solid State Chem 154, 39 (2000).Google Scholar
10. Kumashiro, Y., Nakamura, K., Enomoto, T., and Tanaka, M., J Mater Sci: Mater Electron 22, 966 (2010).Google Scholar
11. Kumashiro, Y., Hirabayashi, M., Koshiro, T., and Okada, Y., J Less-Common Met 143, 159 (1988).Google Scholar
12. Udagawa, T., Odawara, M., and Shimaoka, G., Appl Surf Sci 244, 285 (2005).Google Scholar
13. Yamashita, T., Yamatake, K., Odawara, M., and Udagawa, T., Thin Solid Films 464465, 120 (2004).Google Scholar
14. Chu, T.L., Jackson, J.M., Hyslop, A.E., and Chu, S.C., J Appl Phys 42, 420 (1971).Google Scholar
15. Takenaka, T., Takigawa, M., and Shohno, K., J Electrochem Soc 125, 633 (1978).Google Scholar
16. Kumashiro, Y., Enomoto, T., Sato, K., Abe, Y., Hirata, K., and Yokoyama, T., J Solid State Chem 177, 529 (2004).Google Scholar
17. Schroten, E., Goossens, A., and Schoonman, J., Journal of Applied Physics 83, 1660 (1998).Google Scholar
18. Sanjurjo, J.A., López-Cruz, E., Vogl, P., and Cardona, M., Phys Rev B 28, 4579 (1983).Google Scholar