Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T03:42:19.401Z Has data issue: false hasContentIssue false

Chemical Solution Deposition of PLZT Films on Base Metal Foils

Published online by Cambridge University Press:  11 February 2011

D.-J. Kim
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL
D. Y. Kaufman
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL
S. K. Streiffer
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL
T. H. Lee
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL
R. Erck
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL
O. Auciello
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL
Get access

Abstract

In an effort to develop cost effective, volumetrically efficient, high charge density and high energy density capacitors, Pb(Zr,Ti)O3 and La-doped Pb(Zr,Ti)O3 films were deposited by chemical solution deposition on nickel and alloy foils. PZT films deposited on bare foils exhibited lower permittivity and more electric field hysteresis compared to films deposited on platinized silicon substrates, due to the formation of low capacitance interfacial layers and/or diffusion of foil elements into the PZT. However, an ultimate dielectric breakdown strength of approximately 1.35 MV/cm was obtained for a film thickness of 1.8 μm, corresponding to a withstand voltage of 245 V. A reduced temperature dependence of capacitance was observed with decreasing film thickness. In order to improve the dielectric response, barrier layers of LaNiO3, Ru, or Ir were deposited on top of the metal foils used as substrates. The barrier improved relative permittivity and reduced hysteresis in relative permittivity as a function of dc bias.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kaufman, D. Y., Streiffer, S. K., Im, J., Saha, S., Auciello, O., and Erck, R., p75, Proc. of 10th US-Japan Seminar on Dielectric and Piezoelectric Ceramics (2001).Google Scholar
2. Maria, J.-P., Cheek, K., Streiffer, S. K., Kim, S.-H., Dunn, G., and Kingon, A., J. Am. Ceram. Soc. 84, 2436 (2001).Google Scholar
3. Saegusa, K., Jpn. J. Appl. Phys. 30, 6888 (1997).Google Scholar
4. Zou, Q., Ruda, H. E., and Yacobi, B. G., Appl. Phys. Lett. 78, 1282 (2001).Google Scholar
5. Dawley, J. T. and Clem, P. G., Appl. Phys. Lett. 81, 3028 (2002).Google Scholar
6. Xu, F., Trolier-McKinstry, S., Ren, W., Xu, Baomin, Xie, Z.-L., and Hemker, K. J., J. Appl. Phys. 89, 1336 (2001).Google Scholar
7. Gerson, R. and Marshall, T. C., J. Appl. Phys., 30, 1650 (1959).Google Scholar
8. Streiffer, S. K., Basceri, C., Parker, C. B., Lash, S. E., and Kingon, A. I., J. Appl. Phys. 86, 4565 (1999).Google Scholar
9. Maki, K., Soyama, N., Mori, S., and Ogi, K., Jpn. J. Appl. Phys., 39, 5421 (2000).Google Scholar