Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T05:14:05.101Z Has data issue: false hasContentIssue false

Chemical Bonding, Permittivity and Elastic Properties in Locally Modified Organosilicate Glass

Published online by Cambridge University Press:  01 February 2011

Ehrenfried Zschech
Affiliation:
[email protected], AMD Saxony LLC & Co. KG, Materials Analysis, Wilschdorfer Landstrasse 101, Dresden, N/A, D-01109, Germany, +49-351-277-4100
Heiko Stegmann
Affiliation:
[email protected], Carl Zeiss NTS GmbH, Carl-Zeiss-Strasse 56, Oberkochen, Bayern, D-73447, Germany
Patrick Hoffmann
Affiliation:
[email protected], BTU Cottbus, Angewandte Physik - Sensorik, Konrad-Wachsmann-Allee 17, Cottbus, Brandenburg, D-03046, Germany
Dieter Schmeisser
Affiliation:
[email protected], BTU Cottbus, Angewandte Physik - Sensorik, Konrad-Wachsmann-Allee 17, Cottbus, Brandenburg, D-03046, Germany
Pavel Potapov
Affiliation:
[email protected], AMD Saxony LLC & Co. KG, Wilschdorfer Landstrasse 101, Dresden, Saxony, D-01109, Germany
Hans-Juergen Engelmann
Affiliation:
[email protected], AMD Saxony LLC & Co. KG, Wilschdorfer Landstrasse 101, Dresden, Saxony, D-01109, Germany
Dmytro Chumakov
Affiliation:
[email protected], AMD Saxony LLC & Co. KG, Wilschdorfer Landstrasse 101, Dresden, Saxony, D-01109, Germany
Holm Geisler
Affiliation:
[email protected], AMD Saxony LLC & Co. KG, Wilschdorfer Landstrasse 101, Dresden, Saxony, D-01109, Germany
Get access

Abstract

Changing local electronic polarizability and chemical bonding in OSG in such a way that the effective permittivity - and consequently the electrical performance of the Cu/low-k structure - deteriorates only slightly and that adhesion and stiffness are improved significantly is an extremely challenging task [1], [2]. As the interconnect line spacings continue to shrink, optimization of the electrical and mechanical properties of the ILD material becomes increasingly important for Cu/low-k integration since the effect of thin regions that have been modified by special treatments on the effective material properties, e. g. keff, increases. Composition and chemical bonding, changed by plasma or beam treatments, effect the materials properties significantly. Plasma processes for resist stripping, trench etching and post-etch cleaning remove C and H containing molecular groups from the near-surface layer of OSG. Electron-beam interaction with OSG changes the chemical bonding in the low-k material. In this paper, the effect of chemical bonding on permittivity and elastic modulus is studied. Compositional analysis and chemical bonding characterization of structured ILD films with nanometer resolution is done with electron energy loss spectroscopy (EELS). The fine structure near the C-K electron energy loss edge, allows to differentiate between C-H, C-C, and C-O bonds, and consequently, between individual low-k materials and their modifications. Dielectric permittivity changes are studied based on VEELS (valence EELS) measurements and subsequent Kramers-Kronig analysis. The elastic modulus is determined with atomic force microscopy (AFM) in force modulation (FM) mode. Nanoindentation was applied as a complementary technique to obtain reference data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Grill, A., Edelstein, D., Patel, V., AMC 2001, Conf. Proc. (MRS) ULSI XVII, 253 (2002).Google Scholar
2 Grill, A., Neumayer, D. A., J. Appl. Phys. 94, 6697 (2003).Google Scholar
3 Maex, K. et al., J. Appl. Phys. 93, 8793 (2000).Google Scholar
4 Ho, P. S., Lee, K.D., Pyun, J.W., Lu, X., Yoon, S. in “Materials for Information Technology” (Eds. Zschech, E., Whelan, C., Mikolajick, T.), Springer London, pp.225 (2005).Google Scholar
5 Yonekura, K. et al., J. Vac. Sci. Technol. B 22, 548 (2004).Google Scholar
6 Shaw, T.M., Jimerson, D., Haders, D., Murray, C.E., Grill, A., Edelstein, D.C., and Chidambarrao, D., AMC 2003, Conf. Proc. (MRS) ULSI XIX, 77 (2004).Google Scholar
7 Ajmera, S.K., Matz, P.D., Kim, J., Smith, P.B., Grunow, S., Rao, S.S. Papa, Jin, C., and Hurd, T.Q., Future Fab Intl. 17, 103 (2004).Google Scholar
8 Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edition, Plenum Press New York (1996)Google Scholar
9 Stöger-Pollach, M., Franco, H., Schattschneider, P., Lazar, S., Schaffer, B., Grogger, W., Zandbergen, H. W., Micron, in press (2006).Google Scholar
10 Chumakov, D., Geisler, H., Jiang, L., Zschech, E., 8th Int. Workshop on Stress-Induced Phenomena in Metallization, AIP Conf. Proc. 817, 110 (2006)Google Scholar
11 Ioacopi, F. et al., Electrochem. Sol. St. Lett. 7, G79 (2004)Google Scholar
12 Stegmann, H., Zschech, E., ICCM 2005, AIP Conf. Proc. 788, 549 (2005).Google Scholar
13 Iacopi, F. et al., Mat. Res. Soc. Symp. Proc., Warrendale/PA, 812, 19 (2004).Google Scholar
14 Keast, V. J., Scott, A. J., Brydson, R., Williams, D. B., Bruley, J., J. Microscopy 203, 135 (2001)Google Scholar
15 Petterson, G.M., Agsen, H., Schürmann, B.L., Lippitz, A., Unger, W.Z.S.: Int. J. Quant. Chem. 63, 749 (1998).Google Scholar
16 Walther, T., Quandt, E., Stegmann, H., Thesen, A., Benner, G., Ultramicroscopy, in press (2006).Google Scholar
17 Schmeisser, D., Hoffmann, P., Zheng, F., Himpsel, F., Stegmann, H., Zschech, E., 8th Int. Workshop on Stress-Induced Phenomena in Metallization, AIP Conf. Proc. 817, 117 (2006)Google Scholar
18 Hoffmann, P., Schmeisser, D., Himpsel, F., Engelmann, H. J., Stegmann, H., Denlinger, J. D., MRS Spring 2006, this volumeGoogle Scholar
19 Wühn, M., Weckesser, J., Wöll, Ch.: Langmuir 17, 7605 (2001).Google Scholar
20 Jiang, L., Geisler, H., Zschech, E., Mat. Sci. Poland 23, 643 (2005).Google Scholar