Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T03:21:18.887Z Has data issue: false hasContentIssue false

Charge Transport in Pentacene Thin Film Transistors

Published online by Cambridge University Press:  21 March 2011

J. H. Schön
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974, USA
L. D. Buchholz
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974, USA
Ch. Kloc
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974, USA
B. Batlogg
Affiliation:
also at : Solid State Physics Laboratory, ETH Hönggerberg, CH-8093 Zürich, Switzerland
Get access

Abstract

The charge transport properties in polycrystalline pentacene thin film transistors is investigated. A potential barrier is formed at grain boundaries due charged trapping states. The influence of such grain boundaries on the hole mobility of the devices is analyzed for different grain sizes, trap concentrations, and carrier densities. The results reveal that room temperature mobilities exceeding 0.5 cm2/Vs can be obtained in thin films with large grains as well as in nanocrystalline material. Consequently, single crystal device limits can be reached also by polycrystalline pentacene thin film transistors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brown, A. R., Pomp, A., Hart, C. M., and Leeuw, D. M. de, Science 270, 972 (1995).Google Scholar
2. Dimitrakopoulos, C. D., Purushotaman, S., Kymissis, J., Callegari, A., and Shaw, J. M., Science 283, 822 (1999).Google Scholar
3. Dodabalapur, A., Laquindanum, J., Katz, H. E., and Bao, Z., Appl. Phys. Lett. 69, 4227 (1996).Google Scholar
4. Klauk, H., Gundlach, D. J., Nichols, J. A., and Jackson, T. N., IEEE Trans. Electr. Dev. 46, 1258 (1999).Google Scholar
5. Schön, J. H., Kloc, Ch., and Batlogg, B., Org. Electr. 1, 57 (2000).Google Scholar
6. Lin, Y. Y., Dodabalapur, A., Sarpeshkar, R., Bao, Z., Li, W., Baldwin, K., Raju, V. R., and Katz, H. E., Appl. Phys. Lett. 74, 2714 (1999).Google Scholar
7. Bonse, M., Thomasson, D. B., Klauk, H., Gundlach, D. J., Jackson, T. N., Tech. Dig. Int. Electronic Devices Meet., 249 (1998).Google Scholar
8. Schön, J. H., Berg, S., Kloc, Ch., and Batlogg, B., Science 287, 1022 (2000).Google Scholar
9. Seto, J. Y. W., J. Appl. Phys. 46, 5247 (1975).Google Scholar
10. Orton, J. W. and Powell, M. J., Rep. Prog. Phys. 43, 1263 (1980).Google Scholar