Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T14:41:32.288Z Has data issue: false hasContentIssue false

Charge Carrier Injection Into A Disordered Organic Dielectric

Published online by Cambridge University Press:  11 February 2011

Vladimir I. Arkhipov
Affiliation:
IMEC, B-3001 Heverlee-Leuven, Belgium.
Heinz Bässler
Affiliation:
Institute of Physical, Nuclear and Macromolecular Chemistry and Material Science Center, Philipps University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany.
Evgenia V. Emelianova
Affiliation:
Semiconductor Physics Laboratory, University of Leuven, B-3001 Heverlee-Leuven, Belgium
Get access

Abstract

Based upon the concept of charge carrier hopping within a disordered organic solid a formalism for the temperature and field assisted charge injection from an electrode into an organic dielectric has been developed. Both back flow of charges towards the injecting electrode and the dependence of the injection efficiency upon the charge carrier mobility has implicitly been taken care of. Experimental results for electrode limited injection are in good agreement with the theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nollau, A., Pfeiffer, M., Fritz, T., and Leo, K., J. Appl. Phys. 87, 4340 (2000).CrossRefGoogle Scholar
2. Pfeiffer, M., Beyer, A., Fritz, T., and Leo, K., Appl. Phys. Lett. 73, 3202 (1998).Google Scholar
3. Marks, R. N. and Bradley, D. D. C., Synth. Met. 57, 4128 (1993).CrossRefGoogle Scholar
4. Khramtchenkov, D. V., Bässler, H., and Arkhipov, V. I., J. Appl. Phys. 79, 9283 (1996).CrossRefGoogle Scholar
5. van Woudenbergh, T., Blom, P. W. M., Vissenberg, M. C. J. M., and Huilberts, J. N., Appl. Phys. Lett. 79, 1697 (2001).Google Scholar
6. Pope, H. and Swenberg, C. E., Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford, Univ. Press, 1999).CrossRefGoogle Scholar
7. Wolf, U., Barth, S., and Bässler, H., Appl. Phys. Lett. 75, 2035 (1999).Google Scholar
8. Weiβmantel, C. and Hamann, C., Grundlagen der Festkörperphysik (VEB Deutscher, Berlin, 1981).Google Scholar
9. Vestweber, H., Pommerehne, J., Sander, R., Mahrt, R. F., Greiner, A., Heitz, W., and Bässler, H., Synth. Met. 68, 263 (1995).Google Scholar
10. Shen, Y., Klein, M. W., Jacobs, D. B., Scott, J. C., and Malliaras, G. G., Phys. Rev. Lett. 86, 3867 (2001).Google Scholar
11. Emtage, P. R. and O'Dwyer, J. J., Phys. Rev. Lett. 16, 356 (1966).CrossRefGoogle Scholar
12. Bässler, H., Phys. Stat. Sol. (b) 175, 15 (1993).CrossRefGoogle Scholar
13. Yu. N., Gartstein and Conwell, E. M., Chem. Phys. Lett. 255, 93 (1996).Google Scholar
14. Wolf, U., Arkhipov, V. I., and Bässler, H., Phys. Rev. B 59, 7507 (1999).Google Scholar
15. Arkhipov, V. I., Emelianova, E. V., Tak, Y.-H., and Bässler, H., J. Appl. Phys. 84, 848 (1998).Google Scholar
16. Arkhipov, V. I., Wolf, U., and Bässler, H., Phys. Rev. B 59, 7514 (1999).CrossRefGoogle Scholar
17. Arkhipov, V. I. and Bässler, H., Appl. Phys. Lett. 77, 2758 (2000).CrossRefGoogle Scholar
18. Campbell, A. J., Bradley, D. D. C., and Antoniadis, H., J. Appl. Phys. 89, 3343 (2001).CrossRefGoogle Scholar
19. Miller, A. and Abrahams, E., Phys. Rev. 120, 745 (1960).CrossRefGoogle Scholar
20. Monroe, D., Phys. Rev. Lett. 54, 146 (1985).CrossRefGoogle Scholar
21. Arkhipov, V. I., Emelianova, E. V., and Adriaenssens, G. J., Phys. Rev. B 64, 125125 (2001).CrossRefGoogle Scholar