Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T10:55:12.706Z Has data issue: false hasContentIssue false

Charge and Spin Selfconsistent Kkr-Cpa Methodology for Complex Multi-Component Alloys

Published online by Cambridge University Press:  25 February 2011

A. Bansil
Affiliation:
Department of Physics, Northeastern University, Boston, MA 02115
S. Kaprzyk
Affiliation:
Department of Physics, Northeastern University, Boston, MA 02115 Institute of Physics and Nuclear Techniques, Academy and Metallurgy, Al Mickiewicza 30, Cracow 30059, Poland
J. Tobola
Affiliation:
Institute of Physics and Nuclear Techniques, Academy and Metallurgy, Al Mickiewicza 30, Cracow 30059, Poland
Get access

Abstract

We have developed the charge and spin selfconsistent KKR-CPA approach for a first-principles parameter free treatment of disorder effects in complex multi-component alloys. Thenature of the KKR-CPA Green's function in the complex energy plane is discussed. A generalized Lloyd formula for the density of states is obtained and some subtle features of the formalism are pointed out. We illustrate our KKR-CPA methodology by giving a number of examples of magnetic as well as non-magnetic systems. The non-magnetic cases considered are the simple cubic perovskites BaxK1−0BiO3 and BaPb—1BixO3, and the high-Te superconductor La2—xSrxCuO4 for the body-centeredtetragonal phase. The examples of magnetic systems discussed are, the the Heusler alloys Co2—xFexMnSi (L21 structure), and the semi-magnetic semiconductor Cdl—xMnxTe in the zincblende structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bansil, A., in Electronic Band Structure and it. Application., Lecture Note Series, Vol. 283, edited by Yussouff, M. (Springer-Verlag, Heidelberg, 1987), p273.Google Scholar
2. Bansil, A., in Poaitron Annihilation, edited by Coleman, P. G., Sharma, S. G., and Diana, L. M. (North-Holland, 1982), p291.Google Scholar
3. Ehrenreich, H. and Schwartz, L. M., in Solid State Physics, Vol. 31, edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic, New York,1976).Google Scholar
4. Stocks, G. M. and Winter, H., in Electronic Structure of Complex Systems, edited by Phariseau, P. and Temmerman, W. (Plenum, New York, 1984).Google Scholar
5. See, Kudrnovsky, J., Drchal, V., Sob, M., Christensen, N.E., and Anderson, O.K., Phys. Rev. B40, 10029 (1989), and references therein, for work applying CPA within the LMTO framework to disordered alloys.Google Scholar
6. For an extensive discussion of literature, see Refs. 1-4 above.Google Scholar
7. Kaprzyk, S. and Bansil, A., Phys. Rev. B42, 7358(1990).Google Scholar
8. Bansil, A. and Kaprzyk, S., Phys. Rev. B43, 10335(1991).Google Scholar
9. The analytic properties of the CPA theory are discussed by a number of authors, see Refs. 10-14.Google Scholar
10. Schwartz, L. and Bansil, A., Phys. Rev. B21, 4322(1980).Google Scholar
11. Kaplan, T., Leath, P. L., Gray, L. J., and Diehl, H. W., Phys. Rev. B21, 4230(1980).Google Scholar
12. Mills, R., Gray, L. J., and Kaplan, T., Phys. Rev. B27, 3252(1983).Google Scholar
13. Ducastle, F., J. Phys C 7, 1785(1974).Google Scholar
14. Chen, An-Ban, Phys. Rev. B7, 2230(1973).Google Scholar
15. For a general discussion of complex energy methods see, Refs. 16-18; for application to muffin-tin systems see Ref. 19, and references therein.Google Scholar
16. König, C., J. Phys. F 3,1497(1973).Google Scholar
17. Dreysse, H. and Riedinger, R., J. Physique 42, 437(1982).Google Scholar
18. Williams, A. R., Feibelman, P. J., and Lang, N. D., Phys. Rev. B26, 5433(1982).Google Scholar
19. Drittler, B., Weinert, M., Zeller, R., and Dederichs, P., Phys. Rev. B39, 930(1989).Google Scholar
20. Faulkner, J. S. and Stocks, G. M., Phys. Rev B21, 3222(1980).Google Scholar
21. Bansil, A., Rao, R. S., Mijnarends, P. E., and Schwartz, L., Phys. Rev. B23, 3608(1981).Google Scholar
22. Ψl is thus the energy independent wave function commonly generated in muffin-tin calculations, when the radial Schröinger equation is integrated starting with the form rl for r → 0.Google Scholar
23. Pei, S., Jorgensen, J. D., Dabrowski, B., Hinks, D. G., Richards, D. R., Mitchell, A. W., Newsam, J. M., Sinha, S.K., Vaknin, D., and Jacobson, A.J., Phys. Rev. B41,4126(1990).Google Scholar
24. Cox, D. E. and Sleight, A. W., Sol. State Commun. 19, 969(1976); Acta. Crystal. B35, 1(1979).Google Scholar
25. Papaconstantopoulos, D. A., Pasturel, A., Julien, J. P., and Cyrot, F.-Lackmann, Phys. Rev. B40, 8844(1989).CrossRefGoogle Scholar
26. For a discussion of the Heusler alloys, see Refs. 27-29, and references therein.Google Scholar
27. Webster, P. J., J. Phys. Chem. Sol. 32, 1221(1971).Google Scholar
28. Ziebeck, K. R. and Webster, P. J., Phil. Mag. 34, 973(1976).Google Scholar
29. Fujii, S., Sugimura, S., Ischida, S., and Asano, S., J. Phys.:Cond. Matter 2, 8583(1990).Google Scholar
30. Ido, H. and Yasuda, S., Jour. de Phys. 49, C8141(1989).Google Scholar
31. Kido, M., Ido, H., Yasuda, S., Kido, G., and Nakagawa, Y., Jour. de Phys. 49, C8139(1989).Google Scholar
32. For a recent discussion see, for example, Franciosi, A., in Diluted Magnetic (Semimagnetic) Semiconductora, edited by Aggarwal, R. L., Furdyna, J. K., and Molnar, S. von (Mat. Res. Soc., Pittsburgh, 1987), p.175.Google Scholar
33. Wei, Shu-Huai and Zunger, A., Phys. Rev. B35, 2340(1987).Google Scholar
34. Franciosi, A., Wall, A., Guo, Y., Weaver, J. H., Tsai, M.-H., Dow, J. D., Kasowski, R. V., Reifenberger, R., and Pool, F., Phys. Rev. B40, 12009(1989).Google Scholar
35. Jorgensen, J. D., Beno, M. A., Hinks, D. G., Sonderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B36, 3608(1987).Google Scholar
36. For recent reviews see, Hass, K. C., Solid State Physics 42, 213(1989); W. E. Pickett, Rev. Mod. Phys. 61, 433(1989).Google Scholar