Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T15:22:30.007Z Has data issue: false hasContentIssue false

Characterizations of Boron Carbon Nitride and Boron Carbide Films Synthesized by PECVD

Published online by Cambridge University Press:  01 February 2011

Qingguo Wu
Affiliation:
[email protected], Novellys Systems, Inc, PECVD Business Unit, Tualatin, Oregon, United States
Mandyam Sriram
Affiliation:
[email protected], Novellys Systems, Inc, PECVD Business Unit, Tualatin, Oregon, United States
Jim Sims
Affiliation:
[email protected], Novellys Systems, Inc, PECVD Business Unit, Tualatin, Oregon, United States
Haiying Fu
Affiliation:
[email protected], Novellys Systems, Inc, PECVD Business Unit, Tualatin, Oregon, United States
Sesha Varadarajan
Affiliation:
[email protected], Novellys Systems, Inc, PECVD Business Unit, Tualatin, Oregon, United States
Tim Archer
Affiliation:
[email protected], Novellys Systems, Inc, PECVD Business Unit, Tualatin, Oregon, United States
Nathan J. Trujillo
Affiliation:
[email protected], MIT, Department of Chemical Engineering, Camridge, Massachusetts, United States
Karen K. Gleason
Affiliation:
[email protected], MIT, Department of Chemical Engineering, Camridge, Massachusetts, United States
Get access

Abstract

Thin films of boron carbon nitride (BCN) and boron carbide (BC) were synthesized by plasma enhanced chemical vapor deposition (PECVD) using two different reactant chemistries: (i) N,N’,N” – trimethylborazine (TMB); (ii) dilute diborane (5% in Ar) and hydrocarbon as precursor materials. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Nano-Indentor, Flexus stress instrument and x-ray photoelectron spectroscopy were used to study the deposited films. The BC films are much more stable than BCN films under high humidity (100%) environment. Both BCN and BC films are very stable under atmospheric conditions. A high compressive stress of -4.2 GPA was achieved by conventional PECVD, which show promising applications in high performance ultra large-scale integrated circuit (ULSI) devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Riedel, R., Adv. Mater. 6, 549 (1994).Google Scholar
2. Sugiyama, T., Tai, T., Okamoto, A., Yoshitake, M., Sugino, T., Diamond Relat. Mater. 12, 11131116 (2003).Google Scholar
3. Tai, T., Sugiyama, T., Sugino, T., Diamond Relat. Mater. 12, 11171121 (2003).10.1016/S0925-9635(02)00344-8Google Scholar
4. Liu, J., Loh, K. P., Lin, M., Foo, Y. L., Wang, W. D., Chi, D. Z., J. Appl. Phys. 96, 66796684 (2004).Google Scholar
5. Pascual, E., Martínez, E., Esteve, J. and Lousa, A., Diamond Relat. Mater. 8, 402405 (1999).Google Scholar
6. Lousa, A., Esteve, J., Muhl, S. and Martínez, E., Diamond Relat. Mater. 9, 502505 (2000).Google Scholar
7. Grill, A., Patel, V., Appl. Phys. Lett. 79, 803805 (2001).Google Scholar
8. Ogawa, E.T., et al., Proc. Intl. Reliability Physics Symp. pp. 166172, 2003.Google Scholar
9. van den Hoek, Wilbert G. M., Solid State Technology, November 2005.Google Scholar
10. Oliveira, J. C., Oliveira, M. N., and Conde, O., Surface and Coating Tech. 80, 100104 (1996).Google Scholar
11. Silvestre, A. J., Santos, M. J. and Conde, O., Key Eng. Mater. 56, 230232 (2002).Google Scholar
12. Jamroz, P. and Zyrnicki, W., Diamond Relat. Mater. 14, 14981507 (2005).Google Scholar
13. Afanasyev-Charkin, I. V. and Nastasi, M., J. Appl. Phys. 96, 76817685 (2004).Google Scholar
14. Sharma, R. C. and Koshi, M., Spectrachimica Acta Part A 65, 787791 (2006).Google Scholar
15. Nakamura, K., J. Electrochem. Soc. 133, 1120 (1986).Google Scholar
16. Yuzuriha, T. H., Hess, D. W., Thin Solid Films 140, 199 (1986).Google Scholar
17. Bath, A., van der Put, P. J., Bechet, J. G. M., Schoonman, J., Lepley, B., J. Appl. Phys. 70, 4366 (1991).Google Scholar
18. Deshpande, S. V., Gulari, E., Harris, S. J., Weiner, A. M., Appl. Phys. Lett. 65, 1757 (1994).Google Scholar
19. Peng, J., Zhang, P., Guo, Y., Chen, G. H., Mater. Lett. 29, 191 (1996).Google Scholar
20. Popov, C., Jelinek, M., vanov, B. I., Yomov, R. I., Kulisch, W., Diamond Relat. Mater. 8, 577 (1999).Google Scholar
21. Werheit, H. et al, Proceedings of the 10th International Symposium on Boron, Borides and Related Compounds, AIP Conference Proceedings, New York, 231, p. 355359 (1991).Google Scholar
22. Sreejith, K., Nuwad, J., Pillai, C.G.S., Appl. Surf. Sci. 252, 296 (2005).Google Scholar
23. Pan, Y. Q., Yin, Y., Diamond Relat. Mater. 16, 220224 (2007).Google Scholar