Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T03:29:43.107Z Has data issue: false hasContentIssue false

Characterization of the blue emission of Tm/Er co-implanted GaN

Published online by Cambridge University Press:  01 February 2011

Iman Roqan
Affiliation:
[email protected], University of Strathclyde, Physics, John Anderson Building, 107 Rottenrow, Glasgow, N/A, G4 0NG, United Kingdom
Carol Trager-Cowan
Affiliation:
Ben Hourahine
Affiliation:
Katharina Lorenz
Affiliation:
Emilio Nogales
Affiliation:
Kevin P O’Donnell
Affiliation:
Robert W Martin
Affiliation:
Eduardo Alves
Affiliation:
S Ruffenach
Affiliation:
Olivier Briot
Affiliation:
Get access

Abstract

Comparative studies have been carried out on the cathodoluminescence (CL) and photoluminescence (PL) properties of GaN implanted with Tm and GaN co-implanted with Tm and a low concentration of Er. Room temperature CL spectra were acquired in an electron probe microanalyser to investigate the rare earth emission. The room temperature CL intensity exhibits a strong dependence on the annealing temperature of the implanted samples. The results of CL temperature dependence are reported for blue emission (∼ 477 nm) which is due to intra 4f-shell electron transitions (1G43H6) associated with Tm3+ ions. The 477 nm blue CL emission is enhanced strongly as the annealing temperature increases up to 1200°C. Blue PL emission has also been observed from the sample annealed at 1200°C. To our knowledge, this is the first observation of blue PL emission from Tm implanted GaN samples. Intra-4f transitions from the 1D2 level (∼ 465 nm emission lines) of Tm3+ ions in GaN have been observed in GaN:Tm films at temperatures between 20–200 K. We will discuss the temperature dependent Tm3+ emission in both GaN:Tm,Er and GaN:Tm samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Steckl, A. J., Heikenfeld, J., Lee, D. S. and Garter, M., Mat. Sci. Eng. B 81, 97 (2001).CrossRefGoogle Scholar
[2] Steckl, A. J. and Zavada, J. M., MRS Bull. 24, 33 (1999).CrossRefGoogle Scholar
[3] Lozykowski, H. J., Jadwisienczak, W. M. and Brown, I, App, J.. Phys. 88, 210 (2000).Google Scholar
[4] Lorenz, K, Wahl, U., Alves, E., Dalmasso, S., Martin, R. W., O'Donnell, K. P., Ruffenach, S. and Briot, O.. Appl. Phys. Lett. 85, 2712 (2004).CrossRefGoogle Scholar
[5] Ziegler, J. F., Biersack, J. P., Littmark, U., The stopping and range of ions in solids (Pergamon Press, New York, 1985).Google Scholar
[6] Lozykowski, H. J., Jadwisienczak, W. M. and Brown, I, Appl. Phys. Lett. 74, 1129 (1999).CrossRefGoogle Scholar
[7] Hommerich, U., Nyein, Ei Ei, Lee, D. S., Steckl, A. J. and Zavada, J. M., Appl. Phys. Lett. 83, 4556 (2003).CrossRefGoogle Scholar
[8] Andreev, T., Hori, Y., Biquard, X., Monroy, E., Jalabert, D., Farchi, A., Tanaka, M., Oda, O., Dang, Le Si, and Daudin, B., Phys. Rev. B 71, 115310 (2005).CrossRefGoogle Scholar
[9] Hömmerich, U., Nyein, Ei Ei, Lee, D. S., Heikenfeld, J., Steckl, A. J. and Zavada, J. M., Mater. Sci. Eng. B 105, 91 (2003).CrossRefGoogle Scholar
[10] Lee, D. S. and Steckl, A. J., Appl. Phys. Lett. 83 2094 (2003).CrossRefGoogle Scholar
[11] Lorenz, K., Wahl, U., Alves, E., Dalmasso, S., Martin, R.W., O'Donnell, K.P., MRS Symp. Proc. 798, Y5.4 (2004).CrossRefGoogle Scholar
[12] Seltzer, M. D., Gruber, J. B. and Hills, M. E., J. Appl. Phys. 74, 2821 (1993).CrossRefGoogle Scholar
[13] Lozykowski, H. J., Phys. Rev. B 48, 17758 (1993).CrossRefGoogle Scholar
[14] Kenyon, A.J., Progress in Quantum Electronics 26, 225 (2002).CrossRefGoogle Scholar