Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T01:11:58.506Z Has data issue: false hasContentIssue false

Characterization of Mg AZ31 Alloy ECASD Processed Using Dynamical Mechanical Analysis (DMA)

Published online by Cambridge University Press:  18 May 2015

Daniel Peláez
Affiliation:
Facultad de Ingeniería Mecánica, Universidad de Colombia.
Adriana Restrepo-Osorio
Affiliation:
Facultad de Ingeniería Textil, Universidad de Colombia.
Emigdio Mendoza
Affiliation:
Facultad de Ingeniería Textil, Universidad de Colombia.
Cesar Isaza
Affiliation:
Universidad Nacional de Colombia-Sede Medellín.
Patricia Fernandez-Morales*
Affiliation:
Facultad de Ingeniería Industrial, Universidad Pontificia Bolivariana, Colombia.
*
Get access

Abstract

In the present work was used Dynamical Mechanical Analysis (DMA) to study the magnesium alloy Mg AZ31-B, in plate form with a thickness of 2.5 mm. The plates were processed using Equal Channel Angular Sheet Drawing (ECASD), which is a severe plastic deformation technique, which allows imposing strain without dimensional changes to a metal plate, at room temperature with an angle of 135°. The obtained results show dependence between the storage modulus (M’), temperature and frequency used on the tests. The greater M’ values were obtained at the lower temperatures and at the higher frequency used. However, at lower frequencies M’ response is not affected by the used frequencies. At the higher temperatures there is an M’ reduction, which promotes the material deformation.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Menard, K., Dynamic Mech. Analysis. A practical Introduction, CRC Press, Boca Raton, (1999).CrossRefGoogle Scholar
Nielsen, L. Landel, L, R., Mech. Properties of Polymers and Composites, CRC Press, Boca Raton, (1994) .Google Scholar
Lu, H., Wang, X., Zhang, T., Cheng, Z., Fang, Q., Mater, 2, 958 (2009).CrossRefGoogle Scholar
Gu, J., Zhang, X., Gu, M., Mater. Trans., 45, 1743 (2004).CrossRefGoogle Scholar
Hazeli, K., Sadeghi, A., Pekguleryuz, M., Kontsos, A., Mater. Sci. Eng. A, 589, 275 (2014).CrossRefGoogle Scholar
Buechner, P., Stone, D., Lakes, R., Scr.Mater, 41, 561 (1999).CrossRefGoogle Scholar
Süleyman, G., Turkish J. of Eng. & Environ.Sci., 26, 353 (2002).Google Scholar
Van Humbeeck, J., Journal of Alloy. and Compd, 355, 58 (2003).CrossRefGoogle Scholar
Wang, Q., Fusheng, H., Wu, J., Gangling, H., Mater. Lett, 61, 2598 (2007).CrossRefGoogle Scholar
Zhao, F., Li, Y., Suo, T., Huang, W., Liu, J., Trans of Nonferr Met. Soc. of China, 20, 1316 (2010).CrossRefGoogle Scholar
Kim, Y., Yang, D., Int. Journal of Mech. Sci., 27, 487 (1985).CrossRefGoogle Scholar
Cheng, Y., Chen, Z., Xia, W., Mater. Charact, 58, 617 (2007).CrossRefGoogle Scholar
Ma, L., Wu, X., Xia, K., Mater. Forum, 32, 35 (2008).Google Scholar
Eddahbi, M., Monge, M., Leguey, T., Fernández, P., Pareja, R., Mater. Sci. and Eng., 528, 5927 (2011).CrossRefGoogle Scholar
Chen, Y., Chai, Y., Gireesh, S., Hjelen, J., Mater. Sci. and Eng. A, 545, 139 (2012).CrossRefGoogle Scholar
Chakkingal, U., Suriadi, A., Thomson, P., Mater. Sci. and Eng. A, 266, 241 (1999).CrossRefGoogle Scholar
Chen, D., Wang, J., Tzou, G., Mater. Sci. Forum, 594, 90 (2008).CrossRefGoogle Scholar
Stepanov, N., Kuznetsov, A., Salishchev, G., Raab, G., Valiev, R., Mater. Sci. and Eng. A, 554, 105 (2012).CrossRefGoogle Scholar
Zhang, X., Cao, L., Zhao, Y., Chen, Y., Tian, X., Deng, J., Mater. Sci. and Eng. A, 560, 700 (2013).CrossRefGoogle Scholar
Zhao, X., Yang, X., Liu, X., Wang, X., Langdon, T., Mater. Sci. and Eng. A, 527, 6335 (2010).CrossRefGoogle Scholar
Zhang, J., Perez, R., Lavernia, E., Journal Mater. Sci., 28, 2395 (1993).CrossRefGoogle Scholar
Srikanth, N., Zhong, X., Gupta, M., Mater. Lett., 59, 3851 (2005).CrossRefGoogle Scholar
Schaller, R., J. Alloys Compd., 355, 131 (2003).CrossRefGoogle Scholar
Gehrmann, R., Frommert, M.M., Gottstein, G., Mater. Sci. and Eng. A, 395, 338 (2005).CrossRefGoogle Scholar
Hazeli, K., Sadeghi, A., Pekguleryuz, M., Kontsos, A., Mater. Sci. and Eng. A, 578, 389 (2013).CrossRefGoogle Scholar
Miller, W., Zhuang, L., Bottema, J., Wittebrood, A., DeSmet, P., Haszler, A., Mater. Sci. and Eng. A, 280, 37 (2000).CrossRefGoogle Scholar
Tmuka, M., Watanabe, Y., Higashi, K., Scripta Mater, 45, 89 (2001).Google Scholar
Barnett, M., Keshavarz, Z., Beer, A., Atwell, D., Acta Mater, 52, 5093 (2004).CrossRefGoogle Scholar
Wu, W., Lee, S., Paradowska, A., Gao, Y., Liaw, P., Mater. Sci. and Eng. A, 556, 278 (2012).CrossRefGoogle Scholar
Boehlert, C., Chen, Z., Gutiérrez-Urrutia, I., Llorca, J., Pérez-Prado, M., Acta Mater, 60, 1889 (2012).CrossRefGoogle Scholar
Segal, V., Mater. Sci. and Eng. A, 197, 157 (1995).CrossRefGoogle Scholar
Martínez-Flores, E.E, Negrete, J., Torres-Villaseñor, G., Rev. Matéria, 13, 365 (2008).Google Scholar
Mingler, B., Kulyasova, O.B., Islamgaliev, R.K., Nanostructured materials-processing, structures, properties and applications, 42, 1477 (2007).Google Scholar