Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T19:00:36.500Z Has data issue: false hasContentIssue false

Characterization of Ferroelectric BaTiO3 (100) Surfaces by Variable Temperature Scanning Surface Potential Microscopy and Piezoresponse Imaging

Published online by Cambridge University Press:  10 February 2011

Sergei V. Kalinin
Affiliation:
Dept. Mat. Sci. Eng., University of Pennsylvania, 3231 Walnut st. Philadelphia PA 19104
Dawn A. Bonnell
Affiliation:
Dept. Mat. Sci. Eng., University of Pennsylvania, 3231 Walnut st. Philadelphia PA 19104
Get access

Abstract

Variable temperature atomic force microscopy (AFM), scanning surface potential microscopy (SSPM) and piezoresponse imaging were applied to the characterization of a model BaTiO3(100) surface. The influence of the domain structure on surface topography, surface potential and piezoresponse image is discussed. The domain induced surface corrugations and piezoelectric response were found to disappear above the Curie temperature in full agreement with theoretical expectations. Relaxation of apparent surface potential after the transition to paraelectric state on heating and during the transition to ferroelectric state on cooling was observed. The kinetics of potential relaxation was orders of magnitude slower than that of the transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lines, M. E., Glass, A. M., Principles and Applications of Ferroelectric and Related Materials, (Clarendon Press, Oxford, 1977).Google Scholar
2. Ferroelectric Ceramics, Eds. Setter, N., Colla, E. L. (Birkhauser Verlag Basel, 1993).Google Scholar
3. Jona, F., Shirane, G., Ferroelectric crystals, (Dover, 1993).Google Scholar
4. Terris, B. D., Stem, J. E., Rugar, D., Mamin, H. J., Phys. Rev. Lett., 63, 2669 (1989).Google Scholar
5. Wang, Y. G., Dec, J., Kleemann, W., J. Appl. Phys., 84, 6795 (1998).Google Scholar
6. Zavala, G., Fendler, J. H., Trolier-McKinstry, S., J. Appl. Phys., 81, 7480 (1997).Google Scholar
7. Takashige, M., Hamazaki, S.-I., Fukurai, N. et al. , Jpn. J. Appl. Phys., 35, 5181 (1996).Google Scholar
8. Eng, L. M., Friedrich, M., Fousek, J., Gunter, P., J. Vac. Sci. Technol. B 14, 1191 (1996).Google Scholar
9. Gruverman, A., Auciello, O., Tokumoto, H., Annu. Rev. Mat. Sci, 28, 101 (1998).Google Scholar
10 Takata, K., Kushida, K., Torii, K., Miki, H., Jpn. J. Appl. Phys. 33, 31933196 (1994).Google Scholar
11. Franke, K., Huelz, H., Weihnacht, M., Surf. Sci. 415, 178182 (1998).Google Scholar
12. Nonnenmacher, M., O'Boyle, M. P., Wickramasinghe, H. K., Appl. Phys. Lett. 58, 2921 (1991).Google Scholar
13. Weaver, J. M. R., Abraham, D. W., J. Vac. Sci. Technol. B 9, 1559 (1991).Google Scholar
14. Kalinin, S. V., Bonnell, D. A., submitted to J. Appl. Phys, Z. fur. Met., in printGoogle Scholar
16. Cho, Y., Kazuta, S., Matsuura, K., Appl. Phys. Lett. 75, 2833 (1999).Google Scholar
17. Kay, H. E., Vousden, P., Philos. Mag. 40, 1019 (1949).Google Scholar
Cit. by Landolt-Bornstein New Series Vol.16a, Ed. Hellwege, K.-H. and Hellwege, A.M., (Springer-Verlag, 1981).Google Scholar
18. Fridkin, V. M., Ferroelectric Semiconductors, (Consultants Bureau, New York, 1980).Google Scholar