Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T14:36:02.808Z Has data issue: false hasContentIssue false

Characterization of Electron-Induced Defects in Cu (In, Ga) Se2 Thin Films by Photoluminescence

Published online by Cambridge University Press:  07 May 2015

Shirou Kawakita
Affiliation:
Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki, 305-8505Japan
Mitsuru Imaizumi
Affiliation:
Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki, 305-8505Japan
Shogo Ishizuka
Affiliation:
Insititute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8568Japan
Hajime Shibata
Affiliation:
Insititute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8568Japan
Shigeru Niki
Affiliation:
Insititute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8568Japan
Shuichi Okuda
Affiliation:
Osaka Prefecture University (OPU), Sakai, Osaka, 599-8570Japan
Hiroaki Kusawake
Affiliation:
Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki, 305-8505Japan
Get access

Abstract

CIGS thin films were irradiated with 100 or 250 keV electrons to reveal the radiation defect by analyzing PL measurement. The PL intensity decreased due to non-radiative recombination defects induced by electron irradiation. Furthermore, the intensity 0.8 eV peak of the PL spectrum was observed from CIGS films irradiated with 250 eV electrons and is said to correspond to In-antisite defects in CIGS materials. The defects can usually change into InCu-VCu complex defects combined with VCu, since the formation energy of the complex defect is lower than that of each defect. Cu interstitial defects induced by 250 keV electron irradiation would diffuse to VCu of the complex defect, whereupon the complex defect might become an In-antisite defect due to 250 keV electron irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hisamatsu, T., Aburaya, T. and Matsuda, S., 2nd World Conference on Photovoltaic Energy Conversion, 3568 (1998).Google Scholar
Guillemoles, J. F., Kronik, L., Cahen, D., Rau, U., Jasenek, A. and Schock, H. W., J. Phys. Chem. B. 104, 4849 (2000).CrossRefGoogle Scholar
Kawakita, S., Imaizumi, M., Ishizuka, S., Niki, S., Okuda, S. and Kusawake, H.. Thin Solid Films 535, 353 (2013).CrossRefGoogle Scholar
Kawakita, S., Imaizumi, M., Ishizuka, S., Shibata, H., Niki, S., Okuda, S. and Kusawake, H., J. Jpn. Apply. Phys. 53, 05FW08 (2014).Google Scholar
Igalson, M., Zabierowski, P., Przado, D., Urbaniak, A., Edoff, M. and Shafarman, W. N., Sol. Energy Mater. Sol. Cells 93, 1290 (2009).CrossRefGoogle Scholar
Kawakita, S., Imaizumi, M., Ishizuka, S., Shibata, H., Niki, S., Okuda, S. and Kusawake, H., Thin Solid Films, In press, corrected proof, doi:10.1016/j.tsf.2014.08.050 (2014).Google Scholar
Zott, S., Leo, K., Ruckh, M. and Schock, H. –W., J. Appl. Phys. 82, 356 (1997)CrossRefGoogle Scholar
Ishizuka, S., Sakurai, K., Yamada, A., Matsubara, K., Fons, P., Iwata, K., Nakamura, S., Kimura, Y., Baba, T., Nakanishi, H., Kojima, T. and Niki, S., Sol. Energy Mater. Sol. Cells 87, 541 (2005).CrossRefGoogle Scholar
Ishizuka, S., Yamada, A., Islam, M. M., Shibata, H., Fons, P., Sakurai, T., Akimoto, K. and Niki, S., J. Appl. Phys. 106, 034908 (2009).CrossRefGoogle Scholar
Park, M., Ahn, S., Yun, J. H., Gwak, J., Cho, A., Ahn, S. K., Shin, K., Nam, D., Cheong, H. and Yoon, K., J. Alloys and Comp. 513, 68 (2012).CrossRefGoogle Scholar