Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T20:33:58.759Z Has data issue: false hasContentIssue false

Characterization of AgInSbTe-SiO2 Nanocomposite Thin Film for Hydrogen Gas Sensor Applications

Published online by Cambridge University Press:  25 October 2011

Ching-Hung Wang
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu, Taiwan 30010, R.O.C.
Kuo-Chang Chiang
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu, Taiwan 30010, R.O.C.
Tsung-Eong Hsieh
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu, Taiwan 30010, R.O.C.
Get access

Abstract

Hydrogen (H2) sensing property of AgInSbTe (AIST)-SiO2 nanocomposite thin film prepared by target-attachment sputtering method was investigated in this work. The sample subjected to a 400°C-annealing for 90 sec exhibits a significant sensitivity (58.9 %) and short response time (75 sec) upon the exposure to an ambient containing 200 ppm H2 at 75°C. The gas sensing capability is ascribed to the presence of antimony oxides, e.g., Sb2O3 and Sb2O5, in nanocomposite layer which provide the charge carriers for sensing reactions. Moreover, the high specific-surface-area (SSA) feature of AIST nanocrystals in nanocomoposite layer provided numerous sites for reduction/oxidation reactions and thus a good H2 gas sensing property can be achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, J. J., Behnam, A., Pearton, S. J., and Ural, A., Adv. Mater. XX, 1 (2010).Google Scholar
2. Qurashi, A., Yamazaki, T., EI-Maghraby, E. M., and Kikuta, T., Appl. Phys. Lett. 95, 153109 (2009).10.1063/1.3216052Google Scholar
3. Wang, Y., Mu, Q., Wang, G., and Zhou, Z., Sens. Actuators B 145, 847 (2010).10.1016/j.snb.2010.01.070Google Scholar
4. Lee, J. M., Park, J.-E., Kim, S., Kim, S., Lee, E., Kim, S.-J., and Lee, W., Int. J. Hydrogen Energy 34, 12568 (2010).10.1016/j.ijhydene.2010.08.026Google Scholar
5. Choi, U.-S., Sakai, G., Shimanoe, K., and Yamazoe, N., Sens. Actuators B 107, 397 (2005).10.1016/j.snb.2004.10.033Google Scholar
6. Iwanaga, T., Hyodo, T., Shimizu, Y., and Egashira, M., Sens. Actuators B 93, 519 (2003).10.1016/S0925-4005(03)00181-3Google Scholar
7. Chou, C. C., Hung, F. Y., and Lui, T. S., Scripta Materialia 56,1107 (2007).10.1016/j.scriptamat.2007.02.005Google Scholar
8. Mai, H.-C. and Hsieh, T.-E., Jpn. J. Appl. Phys. 46, 5834 (2007).10.1143/JJAP.46.5834Google Scholar
9. Chiang, K.-C. and Hsieh, T.-H., IEEE Trans. Magn. 47, 656662 (2010).10.1109/TMAG.2011.2108642Google Scholar
10. Moulder, J. F., Stickle, W. F, Sobol, P. E., and Bombem, K. D., Handbook of X-ray Photoelectron Spectroscopy, 2nd ed., Physical Electronics, Minnesota, 1992.Google Scholar
11. Grossner, U., Chirstensen, J. S., Svensson, B.G., and Kuznetsov, A. Y., Superlatt. Microstruct. 42, 294 (2007).Google Scholar
12. Siciliano, T., Di Giulio, M., Tepore, M., Filippo, E., Micocci, G., and Tepore, A., Sens. Actuators B 137, 644 (2009).10.1016/j.snb.2008.12.004Google Scholar