Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T14:03:45.667Z Has data issue: false hasContentIssue false

Characterization and Photoelectrochemistry of Layer-by-Layer Self Assembled Films of CdS Quantum Dots in Polyelectrolyte Matrix

Published online by Cambridge University Press:  21 March 2011

Lara. I. Halaoui*
Affiliation:
Department of Chemistry, American University of Beirut, Beirut, 110236 Lebanon Email:[email protected]
Get access

Abstract

Photoelectrochemical studies of polyacrylate-capped CdS nanoparticles embedded in a polyelectrolyte matrix on electrode surfaces are presented. Multilayered films of polyacrylatecapped Q-CdS are assembled layer-by-layer on solid surfaces modified with a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). The characterization of the layer-bylayer growth by means of UV-visible absorption, photoluminescence, FT-IR spectroscopy and ellipsometry measurements revealed the incorporation of the nanoparticles in the matrix and the reproducible surface-charge reversal taking place. In this paper, we present initial photocurrentvoltage studies of films thus formed, where the feasibility of charge conduction through the polyelectrolyte matrix and the dependence of photocurrent magnitude on the number of bilayers are demonstrated. In addition, the dependence of photocurrent direction on the electrode potential, and the observation of anodic photocurrent spikes attributed to surface states in the presence of dissolved oxygen are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L. E., J. Chem. Phys. 80, 4403 (1984)Google Scholar
2. Brus, L., J. Phys. Chem. 90, 2555 (1986)Google Scholar
3. Euchmüller, A. J., Phys. Chem. B 104, 6514 (2000) and references therein.Google Scholar
4. Mansur, H. S., Grieser, F., Marychurch, M. S., Biggs, S., Urquhart, R. S., Furlong, D. N., J. Chem. Soc. Faraday Trans. 91, 3399 (1995)Google Scholar
5. Ogawa, S., Fan, F. F., Bard, A. J., J. Phys. Chem. 99, 11182 (1995)Google Scholar
6. Kotov, N. A., Dekany, I., J. H. Fendler J. Phys. Chem., 99, 13065 (1995)Google Scholar
7. Ogawa, S., Hu, K., Fan, F., Bard, A. J., J. Phys. Chem. B. 101, 5707 (1997)Google Scholar
8. Kronik, L., Ashkenasy, N., Leibovitch, M., Fefer, E., Shapira, Y., Gorer, S., Hodes, G. J. Electrochem. Soc. 145, 1748 (1998)Google Scholar
9. Drouard, S., Hickey, S. G., Riley, D. J., Chem. Commun. 67 (1999)Google Scholar
10. Hickey, S. G., Riley, D. J., 103, 4599 (1999)Google Scholar
11. Torimoto, T., Tsumura, N., Miyake, M., Nishizawa, M., Sakata, T., Mori, H., Yoneyama, H., Langmuir 15, 1853 (1999)Google Scholar
12. Miyake, M., Torimoto, T., Sakata, T., Mori, H., Yoneyama, H., Langmuir 15, 1503 (1999)Google Scholar
13. Iler, R. K., J. Colloid. Interf. Sc. 21, 569 (1966)Google Scholar
14. Lvov, Y.; Decher, G., Sukhorukov, G., Macromolecules 26, 5396 (1993)Google Scholar
15. Feldheim, D. L., Grabar, K. C., Natan, M. J., Mallouk, T. C., J. Am. Chem. Soc., 118, 7640 (1996).Google Scholar
16. Lvov, Y. M., Lu, Z., Schenkman, J. B., Rusling, J. F., J. Am. Chem. Soc. 120, 4073 (1998)Google Scholar
17. Herron, N., Wang, Y., Eckert, H., J. Am. Chem. Soc. 112, 1322 (1990)Google Scholar
18. Chestnoy, N., Harris, T. D., Hull, R., Brus, L. E., J. Phys. Chem. 90, 3393 (1986)Google Scholar
19. Henglein, A., Ber. Bunsenges. Phys. Chem. 86, 301 (1982)Google Scholar