Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T09:21:56.886Z Has data issue: false hasContentIssue false

Challenges for Sige-Heterotechnology

Published online by Cambridge University Press:  15 February 2011

H. Presting*
Affiliation:
Daimler-Benz Research Center, Dep. F2H/S, Wilhelm-Runge-Str. II, D-89081 Ulm, Tel: 49-731-505-2049, Fax: 505-4102
Get access

Abstract

Heterostructure devices composed of silicon, silicon-germanium or germanium layers have substantially broadened the spectrum of the well established Si microelectronics. The achieved results for devices, such as the SiGe base heterobipolar transistor (SiGe HBT), the n-. and p-channel SiGe modulation doped field effect transistor (SiGe MODFET) and optoelectronic devices (SiGe LED and photodiode) point to the outstanding potential of this novel heterosystem. Today the SiGe HBT is the world fastest Si based transistor with a wide application area from conventional microelectronic applications to microwave power generation in a frequency regime where up to now only III-V semiconductor devices have prevailed. In addition novel SiGe optoelectronic devices, such as SiGe LED and Si/Ge photodetector in the near infrared spectral region (1.3µ) could pave the way for Si based optical interconnect devices monolithically integrated on a Si IC chip (chip to chip coupling). Growth aspects, strain effects, band alignment and novel bandstructure effects in this material system will be reviewed, its effect on the device performance will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Merwe, J.H. van der, Crystal interfaces part II, finite overgrowth, Journal of Applied Physics 34, p. 123–27 (1964); “Structure of epitaxial crystal interfaces,” Surface Science 31, p. 19 8-2 28 (1972)Google Scholar
2. Matthews, J.W. and Blakeslee, A.E., “Defects in epitaxial multilayersJournal of Crystal Growth 27, p. 118125 (1974)Google Scholar
3. Kasper, E. and Woerner, K., Jour.Electrochem. Society 132, p. 2481–86 (1985); E.Kasper, Jour. de Physique Colloque C4, supplement au n9, Tome 49 C4, p. 347–55 (1988)Google Scholar
4. Kasper, E. in “Physics and Applications of Quantum Wells and Superlattices”, ed. by Mendez, E.E. and Klitzing, K. von, p. 101, Nato ASI Series B, Vol. 170, Plenum Press, New York (1987);Google Scholar
5. Krömer, H., Proc.IRE 45, p.1535 (1957)Google Scholar
6. Kasper, E., Kibbel, H., and Konig, U, Mat.Res.Soc.Symp., Proc. 220, 451 (1991)Google Scholar
7. Gruhle, A., Kibbel, H., Koenig, U., Erben, U., and Kasper, E., IEEE Electron Device Letters EDL-13, p. 206 (1992)Google Scholar
8. Schueppen, A., Gruhle, A., Erben, U., Kibbel, H. and Koenig, U., Proceedings of the IEDM'94, p.377380 (1994)Google Scholar
9. Schueppen, A. and Gruhle, A., Electronics Letters (1995), to be publishedGoogle Scholar
10. Daembkes, H., Herzog, H.-J., Jorke, H., Kibbel, H., and Kasper, E. IEDM Technical Digest, IEEE New York, p. 708, (1985)Google Scholar
11. Schuberth, G., Schaeffler, F., Besson, M., Abstreiter, G., and Gornik, E., Appl.Phys. Lett. 59, p.3318 (1991)Google Scholar
12. Fitzgerald, E.A., Xie, Y.H., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.J. and Weir, B.E., Appl. Phys. Lett. 59, p. 811, (1991)Google Scholar
13. Schaeffler, F., Toebben, D., Herzog, H.-J., Abstreiter, G. and Hollaender, B., Science and Technology 7, p. 260 (1991)Google Scholar
14. LeGoues, F.K., Meyerson, B.S., and Morar, J.F., Phys.Rev.Lett. 66, p.2903 (1991)Google Scholar
15. Kdnig, U. and Schaffler, F., IEEE'Electron Device Letters 14, p. 205 (1993)Google Scholar
16. Splett, A., Zinke, T., Petermann, K., Kasper, E., Kibbel, H., and Presting, H., IEEE Photonics Technology Letters 6, p.5961 (1994)Google Scholar
17. Presting, H., Zinke, T., Kibel, H. and Jaros, M., Proc. of 22th ICPS, Vancouver (1994)Google Scholar
18. Karunasiri, R., Park, J.S., and Wang, K., Appl. Phys.Lett. 61, p. 2434 (1992); R. Karunasiri, J.S. Park, K.Wang, and Li-Jen Cheng, A.P. Lett. 59, p. 134 2 (1990)Google Scholar
19. Hertle, H., Schuberth, G., Gornik, E., Abstreiter, G., and Schaeffler, F., Appl. Phys.Lett. 59, p.2977 (1991)Google Scholar
20. People, R., Appl. Phys.Lett. 61, p. 1122 (1992)Google Scholar
21. Fujita, K., Fukatsu, S., Shiraki, Y., Yaguchi, H., and Ito, R., Appl. Phys.Lett. 61, p.210 (1992)Google Scholar
22. Fromherz, T., “Intersubband Absorption in modulationsdotierten p- Si/SiGe Quantentopfen”, DPG Tagung, Moinster 94Google Scholar
23. Tsaur, B. et al. , Optical Engineering 33, p. 72 (1994)Google Scholar
24. Lin, T.L. et al. , Appl.Phys.Lett. 62, p.3318 (1993)Google Scholar
25. Menczigar, U., Abstreiter, G., Kibbel, H., Presting, H., and Kasper, E., Phys. Rev. B47, p.4099 (1993)Google Scholar
26. Presting, H. and Kibbel, H., Thin Solid Films 222, p. 215 (1992)Google Scholar
27. Engvall, J.. Olajos, J., Grimmeiss, H.G., Kibbel, H., Presting, H. and Kasper, E., Appl.Phys. Lett. 63, p.491 (1993)Google Scholar
28. Schmidtchen, J., Splett, A., Schueppert, B., Petermann, K. and Burbach, G., Electronics Letters 27, p. 1486–88 (1991)Google Scholar
29. Soref, R.A., Schmidtchen, J. and Petermann, K., IEEE Jour. of Quantum Electronics 27, p 1971–74 (1991)Google Scholar
30. Gnutzmann, U. and Clausecker, K., Appl. Phys. 3, 9 (1974).Google Scholar
31. Pearsall, T.P., Temkin, H., Bean, J.C. and Luryi, S., IEEE Electron Device Letters EDL-7, p. 330–32 (1986); andGoogle Scholar
32. Pearsall, T.P., Beam, E.A., Temkin, H., and Bean, J.C., Electronics Letters 24, p.685–87(1988)Google Scholar
33. Temkin, H., Bean, J.C., Pearsall, T.P., Olsson, N.A., and Lang, D.V., Appl.Phys.Letters 49, p.155–57 (1986)Google Scholar