Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T02:22:23.921Z Has data issue: false hasContentIssue false

Cathodoluminescence Studies of Si-Sio2 Interfaces Prepared by Plasma-Assisted Oxidation and Subjected to Post-Oxidation Rapid Thermal Annealing

Published online by Cambridge University Press:  10 February 2011

J. Schafer
Affiliation:
Center for Materials Research, Department of Physics
A. P. Young
Affiliation:
Department of Electrical Engineering, Ohio State University, Columbus, OH 43210
L. J. Brillson
Affiliation:
Center for Materials Research, Department of Physics Department of Electrical Engineering, Ohio State University, Columbus, OH 43210
H. Niimi
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
G. Lucovsky
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

We have used low energy cathodolumrdinescence spectroscopy (CLS) to characterize defects at ultrathin (50 Å) silicon dioxide films, prepared on Si substrates by low-temperature plasma deposition. Variable-depth excitation with different electron injection energies provided a clear distinction between deep levels localized within the films versus at their interfaces. Defect bands are evident at 0.8 eV and 1.9 eV, characteristic of an amorphous, silicon-rich local bonding environment. Closer to the film surface, CLS reveals a defect at 2.7 eV indicative of oxygen vacancies in stoichiometric SiO2. The effect of hydrogenation at 400°C, rapid thermal annealing at 900°C, and especially the combination of both processing steps is shown to reduce the density of these defects dramatically.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brüesch, P., Stockmeier, Th., Stucki, F., Buffat, P. A., J. Appl. Phys. 73, 7677 (1993).Google Scholar
2. Yasuda, T., Ma, Y., Habermehl, S., Lucovsky, G., Appl. Phys. Lett. 60, 434 (1992).Google Scholar
3. Hinds, B. J., Wang, F., Wolfe, D. M., Hinkle, C. L., Lucovsky, G., J. Non-Cryst. Solids, accepted for publication, August 1997.Google Scholar
4. Brillson, L. J., Richter, H. W., Slade, M. L., Weinstein, B. A., and Shapira, Y., J. Vac. Sci. Technol. A 3, 1011 (1985).Google Scholar
5. Kalceff, M. A. S., Phillips, M. R., Phys. Rev. B 52, 3122 (1995).Google Scholar
6. Tohmon, R., Shimogaichi, Y., Mizuno, H., Ohki, Y., Nagasawa, K., Hama, Y., Phys. Rev. Lett. 62, 1388 (1989).Google Scholar
7. Koyama, H., J. Appl. Phys. 51, 2228 (1980).Google Scholar
8. Skuja, L. N., Entzian, W., Phys. Stat. Sol. (a) 96, 191 (1986).Google Scholar
9. Koch, F., Petrova-Koch, V., J. Non-Cryst. Solids 198–200, 840 (1996).Google Scholar
10. Cullis, A. G., Canham, L. T., Williams, G. M., Smith, P. W., Dosser, O. D., J. Appl. Phys. 75, 493 (1994).Google Scholar
11. Hattangady, S. V., Alley, R. G., Fountain, G. G., Markunas, R. J., Lucovsky, G., Temple, D., J. Appi. Phys. 73, 7635 (1993).Google Scholar
12. Brillson, L. J. and Viturro, R. E., Scanning Microscopy 2, 789 (1988).Google Scholar
13. Sze, S. M., “Physics of Semiconductor Devices”, second edition, Wiley, New York, 1981, p. 21.Google Scholar
14. Street, R. A., Advances in Physics 30, 593 (1981).Google Scholar
15. Seol, K. S., leki, A., Ohki, Y., Nishikawa, H., Tachimori, M., J. Appl. Phys. 79, 412 (1996).Google Scholar
16. Knights, J. C., Street, R. A., Lucovsky, G., J. Non-Cryst. Solids 35–36, 279 (1980).Google Scholar
17. Carius, R., Fischer, R., Holzenkampfer, E., Stuke, J., J. Appl. Phys. 52, 4241 (1981).Google Scholar
18. Aspnes, D. E., Studna, A. A., Phys. Rev. B 27, 985 (1983).Google Scholar
19. Sieh, K. S., Smith, P. V., Phys. Status Solidi (b) 129, 259 (1985).Google Scholar
20. Lee, D. R., Lucovsky, G., Denker, M. S., Magee, C., J. Vac. Sci. Technol. A 13, 1671 (1995).Google Scholar