Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T13:42:51.954Z Has data issue: false hasContentIssue false

Carbon Nanotubes under Bending Strain

Published online by Cambridge University Press:  15 March 2011

M. Huhtala
Affiliation:
Helsinki University of Technology, Laboratory of Computational Engineering P.O.Box 9400, FIN-02015 HUT, FINLAND
A. Kuronen
Affiliation:
Helsinki University of Technology, Laboratory of Computational Engineering P.O.Box 9400, FIN-02015 HUT, FINLAND
K. Kaski
Affiliation:
Helsinki University of Technology, Laboratory of Computational Engineering P.O.Box 9400, FIN-02015 HUT, FINLAND
Get access

Abstract

Bending induced deformations in single walled carbon nanotubes with zigzag and armchair chirality have been studied computationally using a classical molecular dynamics simulation method. In this the interatomic forces have been described with Brenner's empirical model potential. The results given by this classical model have been assessed by letting the most critical, i.e. the most deformed part, of the nanotube further relax by using a dynamical tight binding simulation method. We find that the empirical potential based approach and the tight binding method reproduce similar deformation patterns when the deformation remains relatively small but at higher levels of deformation the results differ significantly. These comparative simulations indicate that graphene interlayer interaction is an important factor in the behavior of deformed nanotubes.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saito, R., Dresselhaus, G., Dresselhaus, M.S., Physical Properties of Carbon Nanotubes, Imperial College Press (1998).Google Scholar
2. Brenner, D.W., Phys. Rev. B 42 9458 (1990); D.W. Brenner, Phys. Rev. B 46 1948 (1992).Google Scholar
3. Porezag, D., Frauenheim, T., Köhler, T., Seifert, G., and Kaschner, R., Phys. Rev. B 51 12947 (1995); T. Frauenheim, F. Weich, T. Köhler, S. Uhlmann, D. Porezag, and G. Seifert, Phys. Rev. B 52 11492 (1995); G. Seifert, D. Porezag, and T. Frauenheim, Int. J. Quantum Chemistry 58, 185 (1996); M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58 7260 (1998); T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, and R. Scholz, phys. stat. sol. 217/1 41 (2000).Google Scholar
4. Yakobson, B. I., Brabec, C. J., and Bernholc, J., Phys. Rev. Lett. 76, 2511 (1996).Google Scholar
5. Rochefort, A., Salahub, D. R., and Avouris, P., Chem. Phys. Lett. 297, 45 (1998).Google Scholar
6. Rochefort, A., Avouris, P., Lesage, F., and Salahub, D. R., Phys. Rev. B 60, 13824 (1999).Google Scholar
7. Tombler, T. W., Zhou, C. W., Alekseyev, L., Kong, J., Dai, H. J., Lei, L., Jayanthi, C. S., Tang, M. J., and Wu, S. Y., Nature 405, 769 (2000).Google Scholar
8. Postma, H. W. Ch., Jonge, M. de, Yao, Z., and Dekker, C., Phys. Rev. B 62, 10653 (2000).Google Scholar
9. Bozovic, D., Bockrath, M., Hafner, J. H., Lieber, C. M., Park, H., and Tinkham, M., Appl. Phys. Lett. 78, 3693 (2001).Google Scholar
10. Mazzoni, M. S. C. and Chacham, H., Phys. Rev. B 61, 7312 (2000).Google Scholar
11. Hansson, A., Paulsson, M., and Stafström, S., Phys. Rev. B 62, 7639 (2000).Google Scholar