Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T10:58:28.089Z Has data issue: false hasContentIssue false

Calculations of the Structure and Properties of Rapidly Quenched Ni/Zr Alloys

Published online by Cambridge University Press:  11 February 2011

F. J. Cherne
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545–1663, U.S.A.
M. I. Baskes
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545–1663, U.S.A.
R. B. Schwarz
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545–1663, U.S.A.
S. G. Srinivasan
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545–1663, U.S.A.
Get access

Abstract

Using molecular dynamics and a modified embedded atom potential developed by our group we studied the diffusivity and viscosity of molten Ni1-xZrx alloys as a function of composition, temperature, and cooling rate. Previous results indicate that these potentials represent the Ni-Zr system quite well. Liquid alloys were quenched at rates of 5 × 1011 and 1012 K/s. For x > 0.04 the solidified alloys were crystalline. For higher x values, the solidified alloys were amorphous. For the amorphous alloys, the composition dependence of the calculated glass transition temperature Tg follows the general trend of experimental Tg values. The calculated viscosity and diffusivity show systematic variation with composition. For the undercooled Ni-6 at.% Zr melt the calculated viscosity shows the Vogel-Fulcher-Tammann (VFT) behavior characteristic of a “fragile” glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cherne, F. J., Baskes, M. I., and Schwarz, R. B., J. of Non-Crystalline Solids 317, 45 (2003).Google Scholar
2. Eshelman, F. R., and Smith, J. F., J. Appl. Phys. 46, 5080 (1975).Google Scholar
3. Baskes, M. I., Phys. Rev. B 50, 795 (1994).Google Scholar
4. Baskes, M. I., Mater. Sci. and Eng. A, A261, 165 (1999).Google Scholar
5. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).Google Scholar
6. Daw, M. S., Foiles, S. M., and Baskes, M. I., Mater. Sci. Rep. 9, 251 (1993).Google Scholar
7. Baskes, M. I. and Johnson, R. A., Modelling Simul. Mater. Sci. Eng. 2, 147 (1994).Google Scholar
8. Baskes, M. I., Mater. Chem. and Phys., 50, 152 (1997).Google Scholar
9. Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, (The M.I.T Press, Cambridge, MA, 1971).Google Scholar
10. Voigt, W., Lehrbuch der Krystallphysik, (B. G. Teubner, Leipzig, 1928).Google Scholar
11. Nosé, S., Prog. Theor. Phys. Suppl., 103, 1 (1991).Google Scholar
12. Holian, B. L., J. Chem. Phys. 117, 1173 (2003).Google Scholar
13. Buschow, K.H.J., J. Phys. F: Met. Phys. 14, 593 (1984).Google Scholar
14. Nemilov, S. V., Glass Physics and Chemistry 21, 91 (1995).Google Scholar
15. Busch, R., Masuhr, A., Bakker, E., and Johnson, W. L., Mater. Sci. Forum 269–272, 547 (1998).Google Scholar