Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T02:43:57.711Z Has data issue: false hasContentIssue false

Calculations of Perovskite Surface Relaxation

Published online by Cambridge University Press:  21 March 2011

E. Heifets
Affiliation:
Carnegie Institution of Washington, Washington, D.C.20015 Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125
E.A. Kotominc
Affiliation:
Fachbereich Physik, Universität Osnabräck, D-49069 Osnabrück, Germany Institute of Solid State Physics, University of Latvia, 8 Kengaraga, Riga LV-1063, Latvia
R.I. Eglitisc
Affiliation:
Fachbereich Physik, Universität Osnabräck, D-49069 Osnabrück, Germany
R.E. Cohen
Affiliation:
Carnegie Institution of Washington, Washington, D.C.20015 Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

The (100) and (110) surface relaxations are calculated for SrTiO3 and BaTiO3 perovskite thin films by means of a semi-empirical shell model (SM) for different surface terminations. Our SM results for the (100) surface structure are in good agreement with our present ab initio Hartree-Fock calculations with electron correlation corrections, previous ab initio pseudopotential calculationsand LEED experiments. The surface energy for the Ba-, Sr-, TiO- terminated (110) surfaces is found much larger than that for the (100) one. In contrast, the surface energy for the asymmetric O-termination, where outermost O atoms are strongly on-plane displaced, is the lowest for all (110) terminations and thus the most stable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Noguera, C., Physics and Chemistry at Oxide Surfaces, Cambridge Univ. Press, N.Y., 1996.Google Scholar
[2] Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Clarendon, Oxford, 1977.Google Scholar
[3] Auciello, O., Scott, J.F., and Ramesh, R., Physics Today, July 1998, 22.Google Scholar
[4] Proceedings of the Williamsburg workshop on Ferroelectrics-99, J. Phys. Chem. Sol., 61, No 2 (2000).Google Scholar
[5] Zhong, W., Vanderbilt, D., Phys. Rev. B 53, 5047 (1996).Google Scholar
[6] Bickel, N., Schmidt, G., Heinz, K., and Müller, K., Phys. Rev. Lett. 62, 2009 (1989).Google Scholar
[7] Hikita, T., Hanada, T., Kudo, M., Kawai, M., Surf. Sci. 287/288, 377 (1993).Google Scholar
[8] Kudo, M., Hikita, T., Hanada, T., Sekine, R., and Kawai, M.,Surf. and Interf. Analysis, 22, 412 (1994).Google Scholar
[9] Ikeda, A., Nishimura, T., Morishita, T., Kido, Y., Surf. Sci. 433–435, 520 (1999).Google Scholar
[10] Nishimura, T., Ikeda, A., Namba, H., Morishita, T., Kido, Y., Surf. Sci. 421, 273 (1999).Google Scholar
[11] Padilla, J. and Vanderbilt, D., Surf. Sci. 418, 64 (1998).Google Scholar
[12] Padilla, J. and Vanderbilt, D., Phys. Rev. B 56, 1625 (1997).Google Scholar
[13] Meyer, B., Padilla, J., and VVanderbilt, D., Faraday Discussions, 114, 395 (1999).Google Scholar
[14] Cora, F. and Catlow, C.R.A., Faraday Discussions, 114, 421 (1999).Google Scholar
[15] Cohen, R.E., Ferroelectrics 194, 323342 (1997).Google Scholar
[16] Fu, L., Yashenko, E., Resca, L., and Resta, R., Phys. Rev. B 60, 26972703 (1999).Google Scholar
[17rsqb; Cheng, C., Kunc, K., and Lee, M.H., Phys. Rev. B, 62, 1040910417 (2000).Google Scholar
[18] Ravikumar, V., Wolf, D., and Dravid, V.P., Phys. Rev. Lett., 74, 960 (1995).Google Scholar
[19] Prade, J., Schröder, U., Kress, W., Kulkarni, F.W. de, J. Phys: Condens. Matter, 5, 1 (1993).Google Scholar
[20] , Tinte and , Tachiotti, AIP Conf. Proc 535 ed. Cohen, R, 273282 (2000).Google Scholar
[21] Bando, H., Aiura, Y., Haruyama, Y., Shimizu, T., Nishihara, Y., J. Vac. Sci. Technol., B 13, 1150 (1995); K.Szot and W.Speier, Phys. Rev. B 60, 5909 (1999); Q.D.Jiang and J.Zegenhagen, Surf. Sci. 425, 343 (1999); R.Souda, Phys. Rev. B 60, 6068 (1999).Google Scholar
[22] Heifets, E., Kotomin, E.A., and Maier, J., Surf. Sci., 462, 19 (2000).Google Scholar
[23] Gay, D.H. and Rohl, A.L., J. Chem. Soc. Faraday Trans. 91, 925 (1995).Google Scholar
[24] Dovesi, R., Saunders, V.R., Roetti, C., Causa, M., Harrison, N.M., Orlando, R., Apra, E., Crystal-95 User Manual (University of Torino, 1996).Google Scholar
[25] Tasker, P.W., J. Phys. C : Solid State Phys., 12, 4977 (1979).Google Scholar