Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T01:30:30.241Z Has data issue: false hasContentIssue false

Calculation of Modal Contributions to Heat Transfer across Si/Ge Interfaces

Published online by Cambridge University Press:  15 July 2015

Kiarash Gordiz
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA, 30332, USA
Asegun Henry
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA, 30332, USA School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA, 30332, USA
Get access

Abstract

Using our newly proposed interface conductance modal analysis (ICMA) formalism, we study the modal contributions to thermal interface conductance (G ) across the interface of crystalline silicon and crystalline germanium. We present the accumulation functions of G at different temperatures and predict G as a function of temperature after proper quantum-corrections have been applied. Different classes of vibration are identified across the interface, among which interfacial modes are determined to have the highest per mode contribution to G . The results demonstrate the ability of ICMA in not only calculating the spectral contributions to G but exactly pinpointing the shape of each vibrational eigen state.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, P., Shi, L., Majumdar, A., McEuen, P., Thermal transport measurements of individual multiwalled nanotubes, Physical review letters, 87 (2001) 215502.CrossRefGoogle ScholarPubMed
Yee, S.K., Malen, J.A., Majumdar, A., Segalman, R.A., Thermoelectricity in fullerene–metal heterojunctions, Nano letters, 11 (2011) 40894094.CrossRefGoogle ScholarPubMed
Catalan, G., Seidel, J., Ramesh, R., Scott, J.F., Domain wall nanoelectronics, Reviews of Modern Physics, 84 (2012) 119.CrossRefGoogle Scholar
Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Nanoscale thermal transport. II. 2003–2012, Applied Physics Reviews, 1 (2014) 011305.CrossRefGoogle Scholar
Pop, E., Energy dissipation and transport in nanoscale devices, Nano Research, 3 (2010) 147169.CrossRefGoogle Scholar
Minnich, A., Dresselhaus, M., Ren, Z., Chen, G., Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science, 2 (2009) 466479.CrossRefGoogle Scholar
Kapitza, P., The study of heat transfer in helium II, J. Phys.(USSR), 4 (1941) 181210.Google Scholar
Khalatnikov, I.M., *Teploobmen Mezhdu Tverdym Telom I Geliem-Ii, Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 22 (1952) 687704.Google Scholar
Swartz, E., Pohl, R., Thermal resistance at interfaces, Applied Physics Letters, 51 (1987) 22002202.CrossRefGoogle Scholar
Mingo, N., Yang, L., Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach, Physical Review B, 68 (2003) 245406.CrossRefGoogle Scholar
Schelling, P.K., Phillpot, S.R., Keblinski, P., Phonon wave-packet dynamics at semiconductor interfaces by moleculardynamics simulation, Applied Physics Letters, 80 (2002) 24842486.CrossRefGoogle Scholar
Zhao, H., Freund, J.B., Phonon scattering at a rough interface between two fcc lattices, Journal of Applied Physics, 105 (2009) 013515.CrossRefGoogle Scholar
Sun, H., Pipe, K.P., Perturbation analysis of acoustic wave scattering at rough solid-solid interfaces, Journal of Applied Physics, 111 (2012) 023510.CrossRefGoogle Scholar
Sun, L., Murthy, J.Y., Molecular dynamics simulation of phonon scattering at silicon/germanium interfaces, Journal of Heat Transfer, 132 (2010) 102403.CrossRefGoogle Scholar
Tian, Z., Esfarjani, K., Chen, G., Enhancing phonon transmission across a Si/Ge interface by atomic roughness: Firstprinciples study with the Green's function method, Physical Review B, 86 (2012) 235304.CrossRefGoogle Scholar
Chen, Y., Li, D., Yang, J., Wu, Y., Lukes, J.R., Majumdar, A., Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires, Physica B: Condensed Matter, 349 (2004) 270280.CrossRefGoogle Scholar
Hopkins, P.E., Stevens, R.J., Norris, P.M., Influence of inelastic scattering at metal-dielectric interfaces, Journal of Heat Transfer, 130 (2008) 022401.CrossRefGoogle Scholar
Gordiz, K., Henry, A., A New Formalism for Calculating Modal Contributions to Thermal Interface Conductance from Molecular Dynamics Simulations, arXiv preprint arXiv:1407.6410, (2014).Google Scholar
Chalopin, Y., Volz, S., A microscopic formulation of the phonon transmission at the nanoscale, Applied Physics Letters, 103 (2013) 051602.CrossRefGoogle Scholar
Tersoff, J., Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical Review B, 39 (1989) 5566.CrossRefGoogle ScholarPubMed
Chalopin, Y., Esfarjani, K., Henry, A., Volz, S., Chen, G., Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics, Physical Review B, 85 (2012) 195302.CrossRefGoogle Scholar
Landry, E., McGaughey, A., Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations, Physical Review B, 80 (2009) 165304.CrossRefGoogle Scholar
Gordiz, K., Singh, D.J., Henry, A., Ensemble averaging vs. time averaging in molecular dynamics simulations of thermal conductivity, Journal of Applied Physics, 117 (2015) 045104.CrossRefGoogle Scholar
Capinski, W., Maris, H., Ruf, T., Cardona, M., Ploog, K., Katzer, D., Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique, Physical Review B, 59 (1999) 8105.CrossRefGoogle Scholar
Koh, Y.K., Cao, Y., Cahill, D.G., Jena, D., Heat‐Transport Mechanisms in Superlattices, Advanced Functional Materials, 19 (2009) 610615.CrossRefGoogle Scholar
Lee, S.-M., Cahill, D.G., Venkatasubramanian, R., Thermal conductivity of Si–Ge superlattices, Applied physics letters, 70 (1997) 29572959.CrossRefGoogle Scholar
Henry, A.S., Chen, G., Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics, Journal of Computational and Theoretical Nanoscience, 5 (2008) 141152.CrossRefGoogle Scholar
Liu, W., Etessam-Yazdani, K., Hussin, R., Asheghi, M., Modeling and data for thermal conductivity of ultrathin singlecrystal SOI layers at high temperature, Electron Devices, IEEE Transactions on, 53 (2006) 18681876.CrossRefGoogle Scholar
Alvarez-Quintana, J., Rodriguez-Viejo, J., Alvarez, F., Jou, D., Thermal conductivity of thin single-crystalline germanium-on-insulator structures, International Journal of Heat and Mass Transfer, 54 (2011) 19591962.CrossRefGoogle Scholar
Cheaito, R., Duda, J.C., Beechem, T.E., Hattar, K., Ihlefeld, J.F., Medlin, D.L., Rodriguez, M.A., Campion, M.J., Piekos, E.S., Hopkins, P.E., Experimental Investigation of Size Effects on the Thermal Conductivity of Silicon-Germanium Alloy Thin Films, Physical review letters, 109 (2012) 195901.CrossRefGoogle ScholarPubMed
Li, X., Yang, R., Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces, Physical Review B, 86 (2012) 054305.CrossRefGoogle Scholar
Stillinger, F.H., Weber, T.A., Computer simulation of local order in condensed phases of silicon, Physical review B, 31 (1985) 5262.CrossRefGoogle ScholarPubMed
Wu, X., Luo, T., The importance of anharmonicity in thermal transport across solid-solid interfaces, Journal of Applied Physics, 115 (2014) 014901.CrossRefGoogle Scholar
Wang, Y., Huang, H., Ruan, X., Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers, Physical Review B, 90 (2014) 165406.CrossRefGoogle Scholar
Murakami, T., Hori, T., Shiga, T., Shiomi, J., Probing and tuning inelastic phonon conductance across finite-thickness interface, Applied Physics Express, 7 (2014) 121801.CrossRefGoogle Scholar