Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T07:40:54.219Z Has data issue: false hasContentIssue false

Breakdown in ALD-processed oxide based thin film structures

Published online by Cambridge University Press:  05 August 2013

Holger Spahr
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstraße 22, 38106 Braunschweig, Germany
Tim Bülow
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstraße 22, 38106 Braunschweig, Germany
Christine Nowak
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstraße 22, 38106 Braunschweig, Germany
Felix Hirschberg
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstraße 22, 38106 Braunschweig, Germany
Johannes Reinker
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstraße 22, 38106 Braunschweig, Germany
Sami Hamwi
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstraße 22, 38106 Braunschweig, Germany
Hans-Hermann Johannes
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstraße 22, 38106 Braunschweig, Germany
Wolfgang Kowalsky
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstraße 22, 38106 Braunschweig, Germany
Get access

Abstract

We report on the continuous increase of the breakdown electric field, also known as disruptive strength, of an ultra thin layer based on Al2O3 prepared by atomic layer deposition (ALD) by reducing its thickness from 90 nm down to 3 nm. By calculating the disruptive strength for lower thicknesses, we demonstrate that our observations are in agreement with recent reports. Additionally, the disruptive strength increases to lower thicknesses as the pinhole density rises. The pinholes, referred to as morphological defects, are detected by Cu electroplating and result in a lower permittivity of the dielectric. As a conclusion, the dielectric breakdown is predominantly attributed to intrinsic, meaning stoichiometric defects. Thus, morphological defects, consisting of pinholes generated by agglomerative growth of the dielectric, surprisingly do not have a negative influence on the dielectric breakdown of ALD-processed ultra thin dielectric layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meyer, J. et al. ., Applied Physics Letters 94, 233305 (2009)CrossRefGoogle Scholar
Neizvestny, I.G. et al. ., Computational Materials Science 36, (2006) 3641 CrossRefGoogle Scholar
Zhang, et al. ., Thin Solid Films 517, 32693272 (2009)CrossRefGoogle Scholar
Groner, M.D., Elam, J.W., Fabreguette, F.H., George, S.M., Thin Solid Films 413, (2002) 186197 CrossRefGoogle Scholar
Lombardo, Salvatore et al. ., Journal of Applied Physics 98, 121301 (2005)CrossRefGoogle Scholar
DiMaria, D. J. and Stasiak, J. W., Journal of Applied Physics 65, 2342 (1989)CrossRefGoogle Scholar
Stathis, J. H., Journal of Applied Physics 86, 5757 (1999)CrossRefGoogle Scholar
DiMaria, D. J., Solid State Electron. 41, 957 (1997)CrossRefGoogle Scholar
Lin, H. C., Ye, P. D., and Wilk, G. D., Applied Physics Letters 87, 182904 (2005)CrossRefGoogle Scholar
Blonkowski, S., Journal of Applied Physics 107, 084109 (2010)CrossRefGoogle Scholar